Abstract

This paper studies the multi-axial creep behavior of Inconel 718 alloy at 700 °C. The stress triaxiality was introduced into the sample by adding U-shaped notches of various sizes and shapes. Furthermore, the multi-axial creep test of notched round bar was completed, and the sample slice after the creep test was subjected to scanning electron microscopy (SEM) microscopic examination. The influence of notch radius on its creep behavior and damage evolution was studied through experimental and numerical investigation. The finite element method (FEM) implemented by Gurson–Tvergaard–Needleman (GTN) model is used to simulate the evolution of damage in multi-axial stress state. With the comparison between experimental and numerical data, the multi-axial creep behaviors are clearly revealed in terms of stress triaxiality, creep strain (stress), void volume fraction (VVF), and so on. It was found that the great agreement is achieved between FEM and test data, and multi-axial creep behavior is well predicted.

References

1.
Sharma
,
A. D.
,
Sharma
,
A. K.
, and
Thakur
,
N.
,
2014
, “
Crystallographic, Microstructure and Mechanical Characteristics of Dynamically Processed IN718 Superalloy
,”
J. Alloys Compd.
,
597
, pp.
175
180
.10.1016/j.jallcom.2014.02.011
2.
Gujrati
,
R.
,
Gupta
,
C.
,
Jha
,
J. S.
,
Mishra
,
S.
, and
Alankar
,
A.
,
2019
, “
Understanding Activation Energy of Dynamic Recrystallization in Inconel 718
,”
Mater. Sci. Eng. A
,
744
, pp.
638
651
.10.1016/j.msea.2018.12.008
3.
Kang
,
F. W.
,
Zhang
,
X. M.
,
Sun
,
J. F.
, and
Zhao
,
J. L.
,
2013
, “
Hot Deformation Behavior and Processing Map of a Nickel-Base Superalloy GH4169
,”
Adv. Mater. Res.
,
834–836
, pp.
432
436
.10.4028/www.scientific.net/AMR.834-836.432
4.
Kuo
,
C. M.
,
Yang
,
Y. T.
,
Bor
,
H. Y.
,
Wei
,
C. N.
, and
Tai
,
C. C.
,
2009
, “
Aging Effects on the Microstructure and Creep Behavior of Inconel 718 Superalloy
,”
Mater. Sci. Eng. A
,
510–511
(
18
), pp.
289
294
.10.1016/j.msea.2008.04.097
5.
Preuss
,
M.
,
Withers
,
P. J.
, and
Baxter
,
G. J.
,
2006
, “
A Comparison of Inertia Friction Welds in Three Nickel Base Superalloys
,”
Mater. Sci. Eng. A
,
437
(
1
), pp.
38
45
.10.1016/j.msea.2006.04.058
6.
Niang
,
A.
,
Viguier
,
B.
, and
Lacaze
,
J.
,
2010
, “
Some Features of Anisothermal Solid-State Transformations in Alloy 718
,”
Mater. Charact.
,
61
(
5
), pp.
525
534
.10.1016/j.matchar.2010.02.011
7.
Low
,
Z. K.
,
Chaise
,
T.
,
Bardel
,
D.
,
Cazottes
,
S.
,
Chaudet
,
P.
,
Perez
,
M.
, and
Nelias
,
D.
,
2018
, “
A Novel Approach to Investigate Delta Phase Precipitation in Cold-Rolled 718 Alloys
,”
Acta Mater.
,
156
, pp.
31
42
.10.1016/j.actamat.2018.06.005
8.
Komarasamy
,
M.
,
Shukla
,
S.
,
Williams
,
S.
,
Kandasamy
,
K.
,
Kelly
,
S.
, and
Mishra
,
R. S.
,
2019
, “
Microstructure, Fatigue, and Impact Toughness Properties of Additively Manufactured Nickel Alloy 718
,”
Addit. Manuf.
,
28
, pp.
661
675
.10.1016/j.addma.2019.06.009
9.
Dehmas
,
M.
,
Lacaze
,
J.
,
Niang
,
A.
, and
Viguier
,
B.
,
2011
, “
TEM Study of High-Temperature Precipitation of Delta Phase in Inconel 718 Alloy
,”
Adv. Mater. Sci. Eng.
,
2011
, pp.
1
6
.10.1155/2011/940634
10.
Weng
,
S.
,
Huang
,
Y. H.
,
Xuan
,
F. Z.
, and
Zheng
,
S. L.
,
2019
, “
Fracture Location Transition in Constant Load Tests of a NiCrMoV Steel Welded Joint
,”
Mater. Des.
,
181
, p.
108072
.10.1016/j.matdes.2019.108072
11.
Zhang
,
H.
,
Li
,
C.
,
Guo
,
Q.
,
Ma
,
Z.
,
Huang
,
Y.
,
Li
,
H.
, and
Liu
,
Y.
,
2018
, “
Hot Tensile Behavior of Cold-Rolled Inconel 718 Alloy at 650 °C: The Role of δ Phase
,”
Mater. Sci. Eng. A
,
722
, pp.
136
146
.10.1016/j.msea.2018.02.093
12.
Ankit
,
K.
, and
Prasad
,
N.
,
2011
, “
Simulation of Creep Cavity Growth in Inconel 718 Alloy
,”
Mater. Sci. Eng. A
,
528
(
12
), pp.
4209
4216
.10.1016/j.msea.2011.02.012
13.
Chen
,
X.
,
Yang
,
Z.
,
Sokolov
,
M. A.
,
Erdman
,
D. L.
,
Mo
,
K.
, and
Stubbins
,
J. F.
,
2014
, “
Effect of Creep and Oxidation on Reduced Fatigue Life of Ni-Based Alloy 617 at 850
,”
J. Nucl. Mater.
,
444
(
1–3
), pp.
393
403
.10.1016/j.jnucmat.2013.09.030
14.
Howard
,
C.
,
Bhakhri
,
V.
,
Dixon
,
C.
,
Rajakumar
,
H.
,
Mayhew
,
C.
, and
Judge
,
C. D.
,
2019
, “
Coupling Multi-Scale Mechanical Testing Techniques Reveals the Existence of a Trans-Granular Channel Fracture Deformation Mechanism in High Dose Inconel X-750
,”
J. Nucl. Mater.
,
517
, pp.
17
34
.10.1016/j.jnucmat.2019.01.051
15.
Zhang
,
H. J.
,
Li
,
C.
,
Guo
,
Q. Y.
,
Ma
,
Z. Q.
,
Li
,
H. J.
, and
Liu
,
Y. C.
,
2019
, “
Improving Creep Resistance of Nickel-Based Superalloy Inconel 718 by Tailoring Gamma Double Prime Variants
,”
Scr. Mater.
,
164
, pp.
66
70
.10.1016/j.scriptamat.2019.01.041
16.
Hosseini
,
E.
, and
Popovich
,
V. A.
,
2019
, “
A Review of Mechanical Properties of Additively Manufactured Inconel 718
,”
Addit. Manuf.
,
30
, p.
100877
.10.1016/j.addma.2019.100877
17.
Mao
,
J.
,
Li
,
X.
,
Bao
,
S.
,
Ge
,
R.
, and
Yan
,
L.
,
2019
, “
The Experimental and Numerical Studies on Multiaxial Creep Behavior of Inconel 783 at 700 °C
,”
Int. J. Pressure Vessels Piping
,
173
, pp.
133
146
.10.1016/j.ijpvp.2019.05.005
18.
Isobe
,
N.
,
Yashirodai
,
K.
, and
Murata
,
K. I.
,
2014
, “
Creep Damage Assessment for Notched Bar Specimens of a Low Alloy Steel Considering Stress Multiaxiality
,”
Eng. Fract. Mech.
,
123
, pp.
211
222
.10.1016/j.engfracmech.2014.01.017
19.
Mao
,
J. F.
,
Li
,
X. Q.
,
Bao
,
S. Y.
,
Luo
,
L. J.
, and
Gao
,
Z. L.
,
2017
, “
The Influence of the Crust Layer on RPV Structural Failure Under Severe Accident Condition
,”
Nucl. Eng. Des.
,
316
, pp.
63
74
.10.1016/j.nucengdes.2017.02.033
20.
Mao
,
J. F.
,
Li
,
X. Y.
,
Bao
,
S. Y.
,
Luo
,
L. J.
, and
Ding
,
Z. Y.
,
2019
, “
Comparative Study of the Geometric Effects on Fracture Behaviors of Side-Grooved and Plain-Sided Compact Tension Specimens
,”
J. Mater. Eng. Perform.
,
28
(
10
), pp.
6514
6524
.10.1007/s11665-019-04335-1
21.
Bao
,
S.
,
Liu
,
Y.
,
Mao
,
J.
,
Ge
,
R.
, and
Li
,
X.
,
2019
, “
Numerical and Experimental Investigation on Limit Load of Elbow With Local Thinning Area
,”
Int. J. Pressure Vessels Piping
,
172
, pp.
414
422
.10.1016/j.ijpvp.2019.04.014
22.
Huang
,
J.
,
Shi
,
D.
,
Yang
,
X.
, and
Hu
,
X.
,
2014
, “
Effect of Multi-Axial Stress State on Creep Behavior and Stress Rupture Life of a Ni-Based DS Superalloy
,”
Comput. Mater. Sci.
,
85
(
5
), pp.
20
31
.10.1016/j.commatsci.2013.12.026
23.
Sundararaman
,
M.
,
Mukhopadhyay
,
P.
, and
Banerjee
,
S.
,
1988
, “
Precipitation of the δ-Ni 3 Nb Phase in Two Nickel Base Superalloys
,”
Metall. Trans. A
,
19
(
3
), pp.
453
465
.10.1007/BF02649259
24.
Sundararaman
,
M.
,
Mukhopadhyay
,
P.
, and
Banerjee
,
S.
,
1988
, “
Deformation Behaviour of γ″ Strengthened Inconel 718
,”
Acta Metall.
,
36
(
4
), pp.
847
864
.10.1016/0001-6160(88)90139-3
25.
Mao
,
J.
,
Hu
,
L. H.
,
Bao
,
S. Y.
,
Luo
,
L. J.
, and
Gao
,
Z. L.
,
2017
, “
Investigation on the RPV Structural Behaviors Caused by Various Cooling Water Levels Under Severe Accident
,”
Eng. Failure Anal.
,
79
, pp.
274
284
.10.1016/j.engfailanal.2017.04.029
26.
Gholipour
,
H.
,
Biglari
,
F. R.
, and
Nikbin
,
K.
,
2019
, “
Experimental and Numerical Investigation of Ductile Fracture Using GTN Damage Model on in-Situ Tensile Tests
,”
Int. J. Mech. Sci.
,
164
, p.
105170
.10.1016/j.ijmecsci.2019.105170
27.
Oh
,
Y. R.
,
Nam
,
H. S.
,
Kim
,
Y. J.
, and
Miura
,
N.
,
2018
, “
Application of the GTN Model to Ductile Crack Growth Simulation in Through-Wall Cracked Pipes
,”
Int. J. Pressure Vessels Piping
,
159
, pp.
35
44
.10.1016/j.ijpvp.2017.11.006
28.
Sundararaman
,
M.
,
Mukhopadhyay
,
P.
, and
Banerjee
,
S.
,
1992
, “
Some Aspects of the Precipitation of Metastable Intermetallic Phases in INCONEL 718
,”
Metall. Trans. A
,
23
(
7
), pp.
2015
2028
.10.1007/BF02647549
29.
Ni
,
T.
, and
Dong
,
J.
,
2017
, “
Creep Behaviors and Mechanisms of Inconel718 and Allvac718plus
,”
Mater. Sci. Eng. A
,
700
, pp.
406
415
.10.1016/j.msea.2017.06.032
30.
He
,
Y. M.
,
Yang
,
J. G.
,
Chen
,
S. J.
,
Li
,
Z.
, and
Gao
,
Z. L.
,
2016
, “
Effect of High-Temperature Aging on Microstructure and Mechanical Properties of Ni–Mo–Cr Based Superalloy Subjected to Simulated Heat-Affected Zone Thermal Cycle
,”
J. Alloys Compd.
,
660
, pp.
266
275
.10.1016/j.jallcom.2015.11.129
31.
Drexler
,
A.
,
Fischersworring-Bunk
,
A.
,
Oberwinkler
,
B.
,
Ecker
,
W.
, and
Gänser
,
H. P.
,
2018
, “
A Microstructural Based Creep Model Applied to Alloy 718
,”
Int. J. Plasticity
,
105
, pp.
62
73
.10.1016/j.ijplas.2017.11.003
You do not currently have access to this content.