Abstract

There exist many time-temperature parameter (TTP) models for creep rupture prediction of components including the Larson–Miller (LM), Manson–Haferd (MH), Manson–Brown (MB), Orr–Sherby–Dorn (OSD), Manson–Succop (MS), Graham–Walles (GW), Chitty–Duval (CD), Goldhoff–Sherby (GS) models. It remains a challenge to determine which model is “best”, capable of accurate interpolation and physically realistic extrapolation of creep rupture data for a given material. In this study, metamodeling is applied to create a unified TTP metamodel that combines and regresses into twelve TTP models (eight existing and four newly derived). An analysis of the mathematical problems that exist in TTP models is provided. A matlab code is written that can: (1) calibrate the material constants of any of the twelve TTP models (using the metamodel); (2) determine the most suitable stress-parameter function; (3) and report the normalized mean square error (NMSE) of rupture predictions for a given material database. Using the metamodel, and code, a design engineer can make an intelligent selection of the “best” TTP model for creep resistant design. This process is demonstrated using four isotherms of alloy P91 creep rupture data. To assess the influence of material, further validation is performed on alloys Hastelloy X, 304SS, and 316SS. It is determined that the “best” model is dependent on material type and the quality and quantity of available data.

References

1.
Larson
,
F. R.
, and
Miller
,
J.
,
1952
, “
A Time Temperature Relationship for Rupture and Creep Stress
,”
Trans. ASME
,
74
, pp.
765
775
.
2.
Zhao
,
J.
,
Li
,
D. M.
, and
Fang
,
Y. Y.
,
2010
, “
Application of Manson–Haferd and Larson–Miller Methods in Creep Rupture Property Evaluation of Heat-Resistant Steels
,”
ASME J. Pressure Vessel Technol.
,
132
(
6
), p.
064502
.10.1115/1.4001916
3.
Abe
,
F.
,
Tabuchi
,
M.
, and
Hayakawa
,
M.
,
2017
, “
Influence of Data Scattering on Estimation of 100,000 Hrs Creep Rupture Strength of Alloy 617 at 700 C by Larson–Miller Method
,”
ASME J. Pressure Vessel Technol.
,
139
(
1
), p.
011403
.10.1115/1.4033290
4.
Maruyama
,
K.
,
Abe
,
F.
,
Sato
,
H.
,
Shimojo
,
J.
,
Sekido
,
N.
, and
Yoshimi
,
K.
,
2018
, “
On the Physical Basis of a Larson-Miller Constant of 20
,”
Int. J. Pressure Vessel Piping
,
159
, pp.
93
100
.10.1016/j.ijpvp.2017.11.013
5.
Onizawa
,
T.
,
Wakai
,
T.
,
Ando
,
M.
, and
Aoto
,
K.
,
2008
, “
Effect of V and Nb on Precipitation Behavior and Mechanical Properties of High Cr Steel
,”
Nucl. Eng. Des.
,
238
(
2
), pp.
408
416
.10.1016/j.nucengdes.2006.09.013
6.
Kumar
,
J. G.
,
Ganesan
,
V.
,
Laha
,
K.
, and
Mathew
,
M. D.
,
2013
, “
Time Dependent Design Curves for a High Nitrogen Grade of 316 LN Stainless Steel for Fast Reactor Applications
,”
Nucl. Eng. Des.
,
265
, pp.
949
956
.10.1016/j.nucengdes.2013.09.035
7.
Loghman
,
A.
, and
Moradi
,
M.
,
2017
, “
Creep Damage and Life Assessment of Thick-Walled Spherical Reactor Using Larson–Miller Parameter
,”
Int. J. Pressure Vessels Piping
,
151
, pp.
11
19
.10.1016/j.ijpvp.2017.02.003
8.
Zieliński
,
A.
,
Golański
,
G.
,
Sroka
,
M.
, and
Dobrzański
,
J.
,
2016
, “
Estimation of Long-Term Creep Strength in Austenitic Power Plant Steels
,”
Mater. Sci. Technol.
,
32
(
8
), pp.
780
785
.10.1179/1743284715Y.0000000137
9.
Furillo
,
F.
,
Purushothaman
,
S.
, and
Tien
,
J.
,
1977
, “
Understanding the Larson-Miller Parameter
,”
Scr. Metall.
,
11
(
6
), pp.
493
496
.10.1016/0036-9748(77)90164-8
10.
Manson
,
S. S.
, and
Haferd
,
A. M.
,
1953
, “
A Linear Time Temperature Relation for Extrapolation of Creep and Stress-Rupture Data
,” Lewis Flight Propulsion Laboratory, Cleveland, OH.
11.
Manson
,
S. S.
, and
Ensign
,
C. R.
,
1979
, “
A Quarter-Century of Progress in the Development of Correlation and Extrapolation Methods for Creep Rupture Data
,”
ASME J. Eng. Mater. Technol.
,
101
(
4
), pp.
317
319
.10.1115/1.3443696
12.
Manson
,
S. S.
, and
Brown
,
W. F.
, Jr.
,
1953
, “
Time-Temperature-Stress Relations for the Correlation and Extrapolation of Stress-Rupture Data
,”
ASTM Proceedings, Vol.
53, Barr Harbor Dr, Conshohocken, PA, pp.
693
711
.
13.
Orr
,
R. L.
,
Sherby
,
O. D.
, and
Dorn
,
J. E.
,
1954
, “
Correlation of Rupture Data for Metals at Elevated Temperatures
,”
Trans. ASM,
46
, pp.
113
128
.
14.
Manson
,
S. S.
,
Succop
,
G.
, and
Brown
,
W. F.
, Jr.
,
1959
, “
The Application of Time-Temperature Parameters to Accelerated Creep-Rupture Testing
,”
Trans. ASM
,
51
, pp.
911
934
.
15.
Graham
,
A.
, and
Walles
,
K. F. A.
,
1955
, “
Relationships Between Long and Short Time Creep and Tensile Properties of a Commercial Alloy
,”
J. Iron Steel Inst.
,
179
, pp.
105
120
.
16.
Chitty
,
A.
, and
Duval
,
D.
,
1963
, “
The Creep-Rupture Properties of Tubes for High-Temperature Steam Power Plant
,”
Joint International Conference on Creep
, London, UK, pp.
1
4
.10.1243/PIME_CONF_1963_178_048_02
17.
Goldhoff
,
R. M.
, and
Hahn
,
J. G.
,
1968
, “
Correlation and Extrapolation of Creep-Rupture Data of Several Sheets of Steel and Superalloys Using Time-Temperature Parameters
,” ASM Publication, Washington, DC, pp.
199
245
.
18.
Goldhoff
,
R. M.
,
1974
, “
Towards the Standardization of Time-Temperature Parameter Usage in Elevated Temperature Data Analysis
,”
J. Test. Eval.
,
2
, pp.
387
424
.10.1520/JTE10123J
19.
Wilshire
,
B.
,
Scharning
,
P. J.
, and
Hurst
,
R.
,
2009
, “
A New Approach to Creep Data Assessment
,”
Mater. Sci. Eng.: A
,
510
, pp.
3
6
.10.1016/j.msea.2008.04.125
20.
Bolton
,
J.
,
2014
, “
The Potential for Major Extrapolation of Creep Rupture and Creep Strain Data
,”
Mater. High Temp.
,
31
(
2
), pp.
109
120
.10.1179/1878641314Y.0000000007
21.
Holdsworth
,
S. R.
, and
Davies
,
R. B.
,
1999
, “
Recent Advance in the Assessment of Creep Rupture Data
,”
Nucl. Eng. Des.
,
190
(
3
), pp.
287
296
.10.1016/S0029-5493(99)00038-2
22.
Eno
,
D. R.
,
Young
,
G. A.
, and
Sham
,
T. L.
,
2008
, “
A Unified View of Engineering Creep Parameters
,”
ASME
Paper No. PVP2008-61129
. 10.1115/PVP2008-61129
23.
Šeruga
,
D.
, and
Nagode
,
M.
,
2011
, “
Unification of the Most Commonly Used Time-Temperature Creep Parameters
,”
Mater. Sci. Eng. A
,
528
(
6
), pp.
2804
2811
.10.1016/j.msea.2010.12.034
24.
White
,
W.
,
Le May
,
I.
, and
Da Silviera
,
T. L.
,
1980
, “
Design Parameters for High Temperature Creep and the Minimum-Commitment Method
,”
J. Mater. Energy Syst.
,
2
(
2
), pp.
51
59
.10.1007/BF02833430
25.
Haque
,
M. S.
,
Ramirez
,
C.
, and
Stewart
,
C. M.
,
2017
, “
A Novel Metamodeling Approach for Time-Temperature Parameter Models
,”
ASME
Paper No. PVP2017-65297
. 10.1115/PVP2017-65297
26.
Haque
,
M. S.
, and
Stewart
,
C. M.
,
2016
, “
Modeling the Creep Deformation, Damage, and Rupture of Hastelloy X Using MPC Omega, Theta, and Sin-Hyperbolic Models
,”
ASME
Paper No. PVP2016-63029
. 10.1115/PVP2016-63029
27.
Haque
,
M. S.
, and
Stewart
,
C. M.
,
2019
, “
The Disparate Data Problem: The Calibration of Creep Laws Across Test Type and Stress, Temperature, and Time Scales
,”
Theor. Appl. Fract. Mech.
,
100
, pp.
251
268
.10.1016/j.tafmec.2019.01.018
28.
Haque
,
M. S.
, and
Stewart
,
C. M.
,
2019
, “
Comparative Analysis of the Sin-Hyperbolic and Kachanov–Rabotnov Creep-Damage Models
,”
Int. J. Pressure Vessels Piping
,
171
, pp.
1
9
.10.1016/j.ijpvp.2019.02.001
29.
Haque
,
M. S.
, and
Stewart
,
C. M.
,
2016
, “
Exploiting Functional Relationships Between MPC Omega, Theta, and Sin-Hyperbolic Continuum Damage Mechanics Model
,”
ASME
Paper No. PVP2016-63089
. 10.1115/PVP2016-63089
30.
Bendick
,
W.
,
Cipolla
,
L.
,
Gabrel
,
J.
, and
Hald
,
J.
,
2010
, “
New ECCC Assessment of Creep Rupture Strength for Steel Grade X10CrMoVNb9-1 (Grade 91)
,”
Int. J. Pressure Vessel Piping
,
87
(
6
), pp.
304
309
.10.1016/j.ijpvp.2010.03.010
31.
Kimura
,
K.
,
Sawada
,
K.
, and
Kushima
,
H.
,
2012
, “
Creep Rupture Ductility of Creep Strength Enhanced Ferritic Steels
,”
ASME J. Pressure Vessel Technol.
,
134
(
3
), pp.
1
7
.10.1115/1.4005876
32.
Maruyama
,
K.
,
Nakamura
,
J.
, and
Yoshimi
,
K.
,
2014
, “
Prediction of Long-Term Creep Rupture Life of Grade 122 Steel by Multi-Region Analysis
,”
ASME J. Pressure Vessel Technol.
,
137
(
2
), pp.
1
5
.10.1115/1.4028203
33.
Ramirez
,
C.
,
Haque
,
M. S.
, and
Stewart
,
C. M.
,
2017
, “
Guidelines to the Assessment of Creep Rupture Reliability for 316SS Using the Larson-Miller Time-Temperature Parameter Model
,”
ASME
Paper No.
PVP2017-65816. 10.1115/PVP2017-65816
34.
Mendelson
,
A.
,
Roberts
,
E.
, Jr.
, and
Manson
,
S. S.
,
1965
, “
Optimization of Time-Temperature Parameters for Creep and Stress Rupture, With Application to Data From German Cooperative Long-Time Creep Program
,” National Aeronautics and Space Administration Lewis Research Center, Cleveland, OH, Report No.
NASA-TN-D-2975
. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19650021360.pdf
35.
Brear
,
J. M.
,
2008
, “
On the Edge of Reality—An Evaluation of Parametric Representations of Creep Strain and Rupture Data
,”
Mater. High Temp.
,
25
(
3
), pp.
111
119
.10.3184/096034008X354855
36.
Davies
,
R. B.
,
Hales
,
R.
,
Harman
,
J. C.
, and
Holdsworth
,
S. R.
,
1999
, “
Statistical Modeling of Creep Rupture Data
,”
ASME J. Eng. Mater. Technol.
,
121
(
3
), pp.
264
271
.10.1115/1.2812374
37.
Kim
,
W. G.
,
Park
,
J. Y.
,
Kim
,
S. J.
,
Kim
,
E. S.
, and
Jang
,
J.
,
2018
, “
Improvement of Long-Term Creep Life Extrapolation Using a New Master Curve for Grade 91 Steel
,”
J. Mech. Sci. Technol.
,
32
(
9
), pp.
4165
4172
.10.1007/s12206-018-0814-4
38.
National Institute for Materials Science
, 2016, “
NIMS Materials Database—Creep Data Sheet
,” National Institute for Materials Science, Ibaraki, Japan.
39.
Stewart
,
C. M.
,
2013
,
A Hybrid Constitutive Model for Creep, Fatigue, and Creep-Fatigue Damage
,
University of Central Florida
,
Orlando, FL
.
40.
Kim
,
W. G.
,
Yin
,
S. N.
,
Ryu
,
W. S.
,
Chang
,
J. H.
, and
Kim
,
S. J.
,
2008
, “
Tension and Creep Design Stresses of the Hastelloy-X Alloy for High-Temperature Gas Cooled Reactors
,”
Mater. Sci. Eng. A
,
483–484
, pp.
495
497
.10.1016/j.msea.2006.12.184
You do not currently have access to this content.