A new cellular automaton technique was developed based on the finite difference scheme to analyze structures such as beams and plates as well as the acoustic wave equation. The technique uses rules for a cell, and the rules are applied to all the cells repeatedly. The technique is very easy to write a computer code and computationally efficient. Like the standard cellular automaton, many different boundary conditions can be applied easily to the new technique. The technique was applied to both structural and fluid–structure interaction problems. The fluid domain was modeled as either the acoustic medium without flow using the newly developed cellular automaton rules or the fluid flow medium using the lattice Boltzmann technique. Multiple example problems were presented to demonstrate the new technique. Those included dynamic analyses of beams and plates, acoustic wave problems, and coupled fluid–structure interaction problems.

References

1.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
,
1991
,
The Finite Element Method
, 4th ed.,
McGraw-Hill
,
London, UK
.
2.
Bathe
,
K.-J.
,
1996
,
Finite Element Procedures
,
Prentice Hall
,
Upper Saddle River, NJ
.
3.
Hughes
,
T. J. R.
,
2000
,
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
4.
Akin
,
J. E.
,
1986
,
Finite Element Analysis for Undergraduate
,
Academic Press
,
London, UK
.
5.
Kwon
,
Y. W.
, and
Bang
,
H.-C.
,
2000
,
The Finite Element Method Using Matlab
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
6.
Atluri
,
S. N.
,
2002
,
The Meshless Local Petrov–Galerkin (MLPG) Method
,
Tech Science Press
,
Duluth, GA
.
7.
Atluri
,
S. N.
, and
Zhu
,
T.
,
2000
, “
The Meshless Local Petrov–Galerkin (MLPG) Approach for Solving Problems in Elasto-Statics
,”
Comput. Mech.
,
25
(
2
), pp.
169
179
.
8.
Beissel
,
S.
, and
Belytschko
,
T.
,
1996
, “
Nodal Integration of the Element-Free Galerkin Method
,”
Comput. Methods Appl. Mech. Eng.
,
139
(
1–4
), pp.
49
74
.
9.
Belytschko
,
T.
,
Gu
,
L.
, and
Lu
,
Y. Y.
,
1994
, “
Fracture and Crack Growth by Element-Free Galerkin Methods
,”
Model. Simul. Mater. Sci. Eng.
,
2
(
3A
), pp.
519
534
.
10.
Belytschko
,
T.
,
Guo
,
Y.
,
Liu
,
W. K.
, and
Xiao
,
S. P.
,
2000
, “
A Unified Stability Analysis of Meshfree Particle Methods
,”
Int. J. Numer. Methods Eng.
,
48
(
9
), pp.
1359
1400
.
11.
Moukalled
,
F.
,
Mangani
,
L.
, and
Darwish
,
M.
,
2015
,
The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction With Open FOAM and Matlab
,
Springer
,
Heidelberg, Germany
.
12.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Taylor & Francis
,
New York
.
13.
Chen
,
H.
,
1993
, “
Discrete Boltzmann Systems and Fluid Flows
,”
Comp. Phys.
,
7
(
6
), pp.
632
637
.
14.
Chen
,
S.
, and
Doolen
,
G. D.
,
1998
, “
Lattice Boltzmann Method for Fluid Flow
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
329
364
.
15.
Guo
,
Z.
, and
Zhao
,
T. S.
,
2002
, “
Lattice Boltzmann Model for Incompressible Flows Through Porous Media
,”
Phys. Rev. E
,
66
(
3
), p.
036304
.
16.
Tang
,
G. H.
,
Tao
,
W. Q.
, and
He
,
Y. L.
,
2005
, “
Gas Slippage Effect on Microscale Porous Flow Using the Lattice Boltzmann Method
,”
Phys. Rev. E
,
72
(
5
), p.
056301
.
17.
Nourgaliev
,
R.
,
Dinh
,
T.
,
Theofanous
,
T.
, and
Joseph
,
D.
,
2003
, “
The Lattice Boltzmann Equation Method: Theoretical Interpretation, Numerics and Implications
,”
Int. J. Multiphase Flow
,
29
(
1
), pp.
117
169
.
18.
D'Humières
,
D.
,
1992
, “
Generalized Lattice–Boltzmann Equations
,”
Rarefied Gas Dynamics-Theory and Simulations; Proceedings of the 18th International Symposium on Rarefied Gas Dynamics
, University of British Columbia, Vancouver, Canada, pp.
450
458
.
19.
Lallemand
,
P.
, and
Luo
,
L.-S.
,
2000
, “
Theory of the Lattice Boltzmann Method: Dispersion, Dissipation, Isotropy, Galilean Invariance, and Stability
,”
Phys. Rev. E
,
61
(
6
), pp.
6546
6562
.
20.
Kwon
,
Y. W.
, and
Jo
,
J. C.
,
2009
, “
Development of Weighted Residual Based Lattice Boltzmann Techniques for Fluid–Structure Interaction Application
,”
ASME J. Pressure Vessel Technol.
,
131
(
3
), p.
031304
.
21.
Blair
,
S. R.
, and
Kwon
,
Y. W.
,
2015
, “
Modeling of Fluid–Structure Interaction Using Lattice Boltzmann and Finite Element Methods
,”
ASME J. Pressure Vessel Technol.
,
137
(2), p.
021302
.
22.
Wolfram
,
S.
,
1986
, “
Cellular Automaton Fluids 1: Basic Theory
,”
J. Stat. Phys.
,
45
(
3
), pp.
471
526
.
23.
Frisch
,
U.
,
Hasslacher
,
B.
, and
Pomeau
,
Y.
,
1986
, “
Lattice-Gas Automata for the Navier–Stokes Equation
,”
Phys. Rev. Lett.
,
56
(
14
), pp.
1505
1508
.
24.
Doolen
,
G.
, ed.,
1990
,
Lattice Gas Method for Partial Differential Equations
,
Addison-Wesley
,
Ann Arbor, MI
.
25.
Perdang
,
J.
, and
Lejeune
,
A.
, ed.,
1993
,
Cellular Automata: Prospect in Astrophysical Applications
,
World Scientific
,
Singapore
.
26.
Wolfram
,
S.
,
1994
,
Cellular Automata and Complexity: Collected Papers
,
Addison-Wesley
,
Reading, MA
.
27.
Wolfram
,
S.
, ed.,
1986
,
Theory and Application of Cellular Automata
,
Addison-Wesley
,
Reading, MA
.
28.
Preston
,
K.
, Jr.
, and
Duff
,
M. J. B.
,
1985
,
Modern Cellular Automata: Theory and Applications
,
Plenum
,
New York
.
29.
Wolfram
,
S.
,
1983
, “
Statistical Mechanics of Cellular Automata
,”
Rev. Mod. Phys.
,
55
(
3
), pp.
601
644
.
30.
Chopard
,
B.
, and
Droz
,
M.
,
1998
,
Cellular Automata Modeling of Physical Systems
,
Cambridge University Press
,
Cambridge, UK
.
31.
Chopard
,
B.
,
1990
, “
A Cellular Automata Model of Large-Scale Moving Objects
,”
J. Phys. A: Math. Gen.
,
23
(
10
), p.
1671
.
32.
Chopard
,
B.
,
Luthi
,
P.
, and
Marconi
,
S.
,
1998
, “
A Lattice Boltzmann Model for Wave and Fracture Phenomena
,”
Condens. Mater.
, Paper No. 9812220.
33.
Kwon
,
Y. W.
, and
Hosoglu
,
S.
,
2008
, “
Application of Lattice Boltzmann Method, Finite Element Method, and Cellular Automata and Their Coupling to Wave Propagation Problems
,”
Comput. Struct.
,
86
(
7–8
), pp.
663
670
.
34.
Craugh
,
L. E.
, and
Kwon
,
Y. W.
,
2013
, “
Coupled Finite Element and Cellular Automata Methods for Analysis of Composite Structures With Fluid–Structure Interaction
,”
Compos. Struct.
,
102
, pp.
124
137
.
35.
Kwon
,
Y. W.
,
2016
,
Multiphysics and Multiscale Modeling: Techniques and Applications
,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.