New computational techniques were developed for the analysis of fluid-structure interaction. The fluid flow was solved using the newly developed lattice Boltzmann methods, which could solve irregular shape of fluid domains for fluid-structure interaction. To this end, the weighted residual based lattice Boltzmann methods were developed. In particular, both finite element based and element-free based lattice Boltzmann techniques were developed for the fluid domain. Structures were analyzed using either beam or shell elements depending on the nature of the structures. Then, coupled transient fluid flow and structural dynamics were solved one after another for each time step. Numerical examples for both 2D and 3D fluid-structure interaction problems, as well as fluid flow only problems, were presented to demonstrate the developed techniques.

1.
Qian
,
Y. H.
, 1993, “
Simulating Thermodynamics With Lattice BKG Models
,”
J. Sci. Comput.
0885-7474,
8
, pp.
231
241
.
2.
Chen
,
H.
, 1993, “
Discrete Boltzmann Systems and Fluid Flows
,”
Comput. Phys.
,
7
, pp.
632
637
. 0894-1866
3.
Cali
,
A.
,
Succi
,
S.
,
Cancelliere
,
A.
,
Benzi
,
R.
, and
Gramingnani
,
M.
, 1992, “
Diffusion and Hydrodynamic Dispersion With the Lattice Boltzmann Method
,”
Phys. Rev. A
1050-2947,
45
, pp.
5771
5774
.
4.
Chen
,
S.
, and
Doolen
,
G. D.
, 1998, “
Lattice Boltzmann Method for Fluid Flow
,”
Annu. Rev. Fluid Mech.
0066-4189,
30
, pp.
329
364
.
5.
Flekkoy
,
E. G.
, 1993, “
Lattice Bhatnagar-Gross-Krook Models for Miscible Fluids
,”
Phys. Rev. E
1063-651X,
47
, pp.
4247
4257
.
6.
Swift
,
M. R.
,
Orlandini
,
E.
,
Osborn
,
W. R.
, and
Yeomans
,
J. M.
, 1996, “
Lattice Boltzmann Simulations of Liquid-Gas and the Binary Fluid Systems
,”
Phys. Rev. E
1063-651X,
54
, pp.
5041
5052
.
7.
Krafczyk
,
M.
,
Tolke
,
J.
,
Rank
,
E.
, and
Schulz
,
M.
, 2001, “
Two-Dimensional Simulation of Fluid-Structure Interaction Using Lattice-Boltzmann Methods
,”
Comput. Struct.
0045-7949,
79
, pp.
2031
2037
.
8.
Kwon
,
Y. W.
, 2006, “
Development of Coupling Technique for LBM and FEM for FSI Application
,”
Eng. Comput.
0177-0667,
23
(
8
), pp.
860
875
.
9.
He
,
X.
,
Luo
,
L. -S.
, and
Dembo
,
M.
, 1996, “
Some Progress in Lattice Boltzmann Method. Part I. Nonuniform Mesh Grids
,”
J. Comput. Phys.
0021-9991,
129
, pp.
357
363
.
10.
Nannelli
,
F.
, and
Succi
,
S.
, 1992, “
The Lattice Boltzmann Equation on Irregular Lattices
,”
J. Stat. Phys.
0022-4715,
68
(
3-4
), pp.
401
407
.
11.
Chen
,
H.
, 1998, “
Volumetric Formulation of the Lattice Boltzmann Method for Fluid Dynamics: Basic Concept
,”
Phys. Rev. E
1063-651X,
58
(
3
), pp.
3955
3963
.
12.
Peng
,
G.
,
Xi
,
H.
,
Duncan
,
C.
, and
Chou
,
S. -H.
, 1998, “
Lattice Boltzmann Method on Irregular Meshes
,”
Phys. Rev. E
1063-651X,
58
, pp.
R4124
R4127
.
13.
Xi
,
H.
,
Peng
,
G.
, and
Chou
,
S. -H.
, 1999, “
Finite Volume Scheme for the Lattice Boltzmann Method on Unstructured Meshes
,”
Phys. Rev. E
1063-651X,
59
, pp.
6202
6205
.
14.
Chew
,
Y. T.
,
Shu
,
C.
, and
Peng
,
Y.
, 2002, “
On Implementation of Boundary Conditions in the Application of Finite Volume Lattice Boltzmann Method
,”
J. Stat. Phys.
,
107
(
112
), p.
539556
. 0022-4715
15.
Lee
,
T.
, and
Lin
,
C. -L.
, 2001, “
A Characteristic Galerkin Method for Discrete Boltzmann Equation
,”
J. Comput. Phys.
0021-9991,
171
, pp.
336
356
.
16.
Li
,
Y.
,
LeBoeuf
,
E. J.
, and
Basu
,
P. K.
, 2004, “
Least-Squares Finite-Element Lattice Boltzmann Method
,”
Phys. Rev. E
1063-651X,
69
, pp.
065701
.
17.
Beckert
,
A.
, 2000, “
Coupling Fluid (CFD) and Structural (FE) Models Using Finite Interpolation Elements
,”
Aerosp. Sci. Technol.
1270-9638,
4
, pp.
13
22
.
18.
Kuntz
,
M.
,
Ferreira
,
J. C.
,
Menter
,
F. R.
, and
Oudendijk
,
G. N. M.
, 2002, “
Analysis of Fluid-Structure Interaction With an Improved Coupling Strategy
,”
Proceedings of the Third International Conference Engineering Computational Technology
, Stirling, Scotland, pp.
85
86
.
19.
Cheng
,
Y.
,
Oertel
,
H.
, and
Schenkel
,
T.
, 2005, “
Fluid-Structure Coupled CFD Simulation of the Left Ventricular Flow During Filling Phase
,”
Ann. Biomed. Eng.
0090-6964,
33
(
5
), pp.
567
576
.
20.
Zienkiewicz
,
O. C.
and
Newton
,
R. E.
, 1969, “
Coupled Vibration of a Structure Submerged in a Compressible Fluid
,”
Proceedings of the International Symposium on Finite Element Techniques
, Stuttgart, Germany, May 1–15.
21.
Zienkiewicz
,
O. C.
,
Onate
,
E.
, and
Heinrich
,
J. C.
, 1981, “
A General Formulation for Coupled Thermal Flow of Metals Using Finite Elements
,”
Int. J. Numer. Methods Eng.
0029-5981,
17
, pp.
1497
1514
.
22.
Lewis
,
R. W.
,
Bettess
,
P.
, and
Hinton
,
E.
, 1984,
Numerical Methods in Coupled Systems
,
Wiley
,
Chichester, UK
.
23.
Bathe
,
K. J.
,
Zhang
,
H.
, and
Wang
,
M. H.
, 1995, “
Finite Element Analysis of Incompressible and Compressible Fluid Flows With Free Surfaces and Structural Interactions
,”
Comput. Struct.
0045-7949,
56
(
2-3
), pp.
193
213
.
24.
Bathe
,
K. J.
,
Zhang
,
H.
, and
Ji
,
S.
, 1999, “
Finite Element Analysis of Fluid Flows Fully Coupled With Structural Interactions
,”
Comput. Struct.
0045-7949,
72
, pp.
1
16
.
25.
Kwon
,
Y. W.
, and
McDermott
,
P. M.
, 2001, “
Effects of Void Growth and Nucleation on Plastic Deformation of Plates Subjected to Fluid-Structure Interaction
,”
ASME J. Pressure Vessel Technol.
0094-9930,
123
, pp.
480
485
.
26.
Newton
,
R. E.
, 1980, “
Finite Element Study of Shock Induced Cavitation
,”
ASCE Spring Conference
, Portland, OR.
27.
Zienkiewicz
,
O. C.
,
Paul
,
D. K.
, and
Hinton
,
E.
, 1983, “
Cavitation in Fluid-Structure Response With Particular Reference to Dam Under Earthquake Loading
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
11
(
4
), pp.
463
481
.
28.
Bathe
,
K. J.
,
Nitikipaiboon
,
C.
, and
Wang
,
X.
, 1995, “
A Mixed Displacement-Based Finite Element Formulation for Acoustic Fluid-Structure Interaction
,”
Comput. Struct.
0045-7949,
56
, pp.
225
237
.
29.
Kwon
,
Y. W.
, and
Fox
,
P. K.
, 1993, “
Underwater Shock Response of a Cylinder Subjected to a Side on Explosion
,”
Comput. Struct.
0045-7949,
48
(
4
), pp.
637
646
.
30.
Kwon
,
Y. W.
,
Bergensen
,
J. K.
, and
Shin
,
Y. S.
, 1994, “
Effect of Surface Coatings on Cylinders Exposed to Underwater Shock
,”
Shock Vib.
1070-9622,
1
(
3
), pp.
637
646
.
31.
Kwon
,
Y. W.
, and
Cunningham
,
R. E.
, 1998, “
Comparison of USA-DYNA Finite Element Models for a Stiffened Shell Subject to Underwater Shock
,”
Comput. Struct.
0045-7949,
66
(
1
), pp.
127
144
.
32.
Everstine
,
G. C.
, and
Henderson
,
F. M.
, 1990, “
Coupled Finite Element/Boundary Element Approach for Fluid-Structure Interaction
,”
J. Acoust. Soc. Am.
0001-4966,
87
, pp.
1938
1947
.
33.
Giordano
,
J. A.
, and
Koopmann
,
G. H.
, 1995, “
State Space Boundary Element-Finite Element Coupling for Fluid-Structure Interaction Analysis
,”
J. Acoust. Soc. Am.
0001-4966,
98
, pp.
363
372
.
34.
Kwon
,
Y. W.
, and
Jo
,
J. C.
, 2008, “
3-D Modeling of Fluid-Structure Interaction With External Flow Using Coupled LBM and FEM
,”
ASME J. Pressure Vessel Technol.
0094-9930,
130
(
2
), pp.
021301
.
35.
Bhatnagar
,
P.
, and
Gross
,
E. P.
, and
Krook
,
M. K.
, 1954, “
A Model for Collision Process in Gases. I: Small Amplitude Processes in Charged and Neutral One-Component System
,”
Phys. Rev.
0031-899X,
94
, pp.
511
525
.
36.
Belytschko
,
T.
,
Lu
,
Y. Y.
, and
Gu
,
L.
, 1994, “
Element-Free Galerkin Methods
,”
Int. J. Numer. Methods Eng.
0029-5981,
37
, pp.
229
256
.
37.
Ghia
,
U.
,
Ghia
,
K. N.
, and
Shin
,
C. T.
, 1982, “
High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method
,”
J. Comput. Phys.
0021-9991,
48
, pp.
387
411
.
You do not currently have access to this content.