The perturbation method, the Edgeworth series, the reliability-based optimization, the reliability sensitivity technique, and the robust design are employed to present a practical and effective approach for the robust reliability design of the Banjo flange with arbitrary distribution parameters on the condition of known first four moments of original random variables. The theoretical formulas of robust reliability design for the Banjo flange with arbitrary distribution parameters are obtained. The respective program can be used to obtain the robust reliability design parameters of the Banjo flange with arbitrary distribution parameters accurately and quickly.
Issue Section:
Research Papers
1.
Ang
, A. H. S.
, and Tang
, W. H.
, 1975, Probability Concepts in Engineering Planning and Design, Volume I, Basic Principles
, Wiley
, New York.2.
Ang
, A. H. S.
, and Tang
, W. H.
, 1984, Probability Concepts in Engineering Planning and Design, Volume II, Decision, Risk, and Reliability
, Wiley
, New York.3.
Tang
, J.
, 1998, “Reliability Assessment of Mechanical Components Using Fuzzy-Set Theory
,” ASME J. Pressure Vessel Technol.
0094-9930, 120
(3
), pp. 270
–275
.4.
Zhao
, J.
, Tang
, J.
, and Wu
, H. C.
, 2000, “A Generalized Random Variable Approach for Strain-Based Fatigue Reliability Analysis
,” ASME J. Pressure Vessel Technol.
0094-9930, 122
(2
), pp. 156
–161
.5.
Zhao
, Y. G.
, and Ono
, T.
, 2000, “Third-Moment Standardization for Structural Reliability, Analysis
,” J. Struct. Eng.
0733-9445, 126
(6
), pp. 724
–732
.6.
Zhang
, Y. M.
, Chen
, S. H.
, Liu
, Q. L.
, and Liu
, T. Q.
, 1996, “Stochastic Perturbation Finite Elements
,” Comput. Struct.
0045-7949, 59
(3
), pp. 425
–429
.7.
Zhang
, Y. M.
, Wen
, B. C.
, and Chen
, S. H.
, 1996, “PFEM Formalism in Kronecker Notation
,” Math. Mech. Solids
1081-2865, 1
(4
), pp. 445
–461
.8.
Zhang
, Y. M.
, Wen
, B. C.
, and Liu
, Q. L.
, 1998, “First Passage of Uncertain Single Degree-of-Freedom Nonlinear Oscillators
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 165
(4
), pp. 223
–231
.9.
Zhang
, Y. M.
, Liu
, Q. L.
, and Wen
, B. C.
, 2002, “Quasi-failure Analysis on Resonant Demolition of Random Structural Systems
,” AIAA J.
0001-1452, 40
(3
), pp. 585
–586
.10.
Zhang
, Y. M.
, and Liu
, Q. L.
, 2002, “Reliability-Based Design of Automobile Components
,” Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
0954-4070, 216
(D6
), pp. 455
–471
.11.
Zhang
, Y. M.
, and Liu
, Q. L.
, 2002, “Practical Reliability-Based Analysis of Coil Tube-Spring
,” Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062, 216
(C2
), pp. 179
–182
.12.
Zhang
, Y. M.
, Liu
, Q. L.
, and Wen
, B. C.
, 2003, “Practical Reliability-Based Design of Gear Pairs
,” Mech. Mach. Theory
0094-114X, 38
(12
), pp. 1363
–1370
.13.
Zhang
, Y. M.
, Wang
, S.
, Liu
, Q. L.
, and Wen
, B. C.
, 2003, “Reliability Analysis of Multi-degree-of-Freedom Nonlinear Random Structure Vibration Systems With Correlation Failure Modes
,” Sci. China, Ser. E: Technol. Sci.
1006-9321, 46
(5
), pp. 498
–508
.14.
Enevoldsen
, I.
, and Sorensen
, J. D.
, 1994, “Reliability-Based Optimization in Structural Engineering
,” Struct. Safety
0167-4730, 15
(3
), pp. 169
–196
.15.
Moses
, F.
, 1997, “Problems and Prospect of Reliability-Based Optimization
,” Eng. Struct.
0141-0296, 19
(4
), pp. 293
–301
.16.
Youn
, B. D.
, Choi
, K. K.
, and Park
, Y. H.
, 2003, “Hybrid Analysis Method for Reliability-Based Design Optimization
,” ASME J. Mech. Des.
1050-0472, 125
(2
), pp. 221
–232
.17.
Bjerager
, P.
, and Krenk
, S.
, 1989, “Parametric Sensitivity in First Order Reliability Analysis
,” J. Eng. Mech.
0733-9399, 115
(7
), pp. 1577
–1582
.18.
Wu
, Y. T.
, 1994, “Computational Methods for Efficient Structural Reliability and Reliability Sensitivity Analysis
,” AIAA J.
0001-1452, 32
(8
), pp. 1717
–1723
.19.
Zhang
, Y. M.
, Wen
, B. C.
, and Liu
, Q. L.
, 2003, “Reliability Sensitivity for Rotor—Stator Systems With Rubbing
,” J. Sound Vib.
0022-460X, 259
(5
), pp. 1095
–1107
.20.
Belegundu
, A. D.
, and Zhang
, S. H.
, 1992, “Robustness of Design Through Minimum Sensitivity
,” ASME J. Mech. Des.
1050-0472, 114
(6
), pp. 213
–217
.21.
Chen
, W.
, Allen
, J. K.
, Tsui
, K.-L.
, and Mistree
, F.
, 1996, “A Procedure for Robust Design: Minimizing Variations Caused by Noise Factors and Control Factors
,” ASME J. Mech. Des.
1050-0472, 118
(4
), pp. 478
–485
.22.
Su
, J.
, and Renaud
, J. E.
, 1997, “Automatic Differentiation in Robust Optimization
,” AIAA J.
0001-1452, 35
(6
), pp. 1072
–1079
.23.
Babu
, S.
, and Iyer
, P. K.
, 1999, “A Robust Method for Inelastic Analysis of Components Made of Anisotropic Material
,” ASME J. Pressure Vessel Technol.
0094-9930, 121
(2
), pp. 154
–159
.24.
Seshadri
, R.
, and Wu
, S.
, 2001, “Robust Estimation of Inelastic Fracture Energy Release Rate (J): A Design Approach
,” ASME J. Pressure Vessel Technol.
0094-9930, 123
(2
), pp. 214
–219
.25.
Liaw
, L. D.
, and DeVries
, R. I.
, 2001, “Reliability-Based Optimization for Robust Design
,” Int. J. Veh. Des.
0143-3369, Vol. 25
, Nos. 1/2 (Special Issue), pp. 64
–77
.26.
Wu
, F. C.
, and Chyu
, C. C.
, 2004, “Optimization of Robust Design for Multiple Quality Characteristics
,” Int. J. Prod. Res.
0020-7543, 42
(2
), pp. 337
–354
.27.
Rosenblatt
, M.
, 1952, “Remarks on a Multivariate Transformation
,” Ann. Math. Stat.
0003-4851, 23
(3
), pp. 470
–472
.28.
Blake
, A.
, 1989, Practical Stress Analysis in Engineering Design
, Marcel Dekker
, New York.29.
Vetter
, W. J.
, 1973, “Matrix Calculus Operation and Taylor Expansions
,” SIAM Rev.
0036-1445, 15
(2
), pp. 352
–369
.30.
Cramer
, H.
, 1964, Mathematical Methods of Statistics
, Princeton University Press
, Princeton.Copyright © 2005
by American Society of Mechanical Engineers
You do not currently have access to this content.