Abstract

Offshore wind turbines (OWTs) face fatigue damage from constant exposure to wind, waves, and ocean currents, which can lead to catastrophic tower failure, especially with the presence of double cracks. This study investigates the fatigue crack growth life (FCGL) of a 2.1-MW OWT tower under typhoon conditions, considering double cracks. Fluid–structure interaction (FSI) simulations are conducted to reflect real environmental conditions in the Yellow Sea, identifying stress hotspots that serve as crack initiation points. The Forman–Newman–de Koning (FNK) model and linear elastic fracture mechanics are used to calculate crack growth under double crack conditions compared to single cracks. The results indicate that, under typhoon conditions, the location of the maximum equivalent stress on OWT towers shifts upward. During the growth of double cracks, the dominant crack exhibits a similar growth trend to a single crack, while the subordinate crack experiences a gradual decrease in growth rate after penetrating the tower and tends to cease expansion. The presence of double cracks significantly reduces the FCGL of the tower; under wind loading, FCGL decreases from 2.46 years for a single crack to 1.45 years, and under combined wind and wave loading, FCGL decreases from 1.48 years to 0.82 years. This study provides a basis for assessing the damage tolerance of OWT under extreme conditions with double cracks and offers references for maintenance and repair work for engineering professionals.

References

1.
Hong
,
H. P.
, and
Sheng
,
C.
,
2022
, “
Reliability-Based Calibration of Site-Specific Design Typhoon Wind and Wave Loads for Wind Turbine
,”
Eng. Struct.
,
270
, p.
114885
.
2.
Zhang
,
Z.
,
Wang
,
X.
,
Zhang
,
X.
,
Zhou
,
C.
, and
Wang
,
X.
,
2024
, “
Dynamic Responses and Mooring Line Failure Analysis of the Fully Submersible Platform for Floating Wind Turbine Under Typhoon
,”
Eng. Struct.
,
301
(
10
), p.
117334
.
3.
Chen
,
Y.
, and
Lin
,
H.
,
2022
, “
Overview of the Development of Offshore Wind Power Generation in China
,”
Sustain. Energy Technol. Assess.
,
53
(
1
), p.
102766
.
4.
Hallowell
,
S. T.
,
Myers
,
A. T.
,
Arwade
,
S. R.
,
Pang
,
W.
,
Rawal
,
P.
,
Hines
,
E. M.
,
Hajjar
,
J. F.
, et al.
,
2018
, “
Hurricane Risk Assessment of Offshore Wind Turbines
,”
Renewable Energy
,
125
(
SEP.
), pp.
234
249
.
5.
Li
,
J. W.
,
Bian
,
J. Y.
,
Ma
,
Y. X.
, and
Jiang
,
Y. C.
,
2021
, “
Impact of Typhoons on Floating Offshore Wind Turbines: A Case Study of Typhoon Mangkhut
,”
J. Mar. Sci. Eng.
,
9
(
5
), p.
543
.
6.
Shakya
,
P.
,
Thomas
,
M.
,
Seibi
,
A. C.
,
Shekaramiz
,
M.
, and
Masoum
,
M. S.
,
2024
, “
Fluid-Structure Interaction and Life Prediction of Small-Scale Damaged Horizontal Axis Wind Turbine Blades
,”
Results Eng.
,
23
, p.
102388
.
7.
Yuan
,
L.
,
Liu
,
Z.
,
Li
,
L.
, and
Lin
,
M.
,
2022
, “
Analysis of the Influence of the Blade Deformation on Wind Turbine Output Power in the Framework of a Bidirectional Fluid-Structure Interaction Model
,”
Fluid Dyn. Mater. Process.
,
19
(
5
), pp.
1129
1141
.
8.
Qu
,
A.
, and
Li
,
F.
,
2023
, “
Effect of Double Crack on Fatigue Crack Growth Life of 3D Printing Compressor Impeller
,”
Thin Walled Struct.
,
189
(
8
), p.
110883
.
9.
Liu
,
D.
,
Tian
,
G.
,
Yang
,
Z.
, and
Jin
,
G.
,
2021
, “
Comparative Study of the Growth of Single-Crack and Double-Crack Samples Under Tensile Fatigue Loads
,”
Arch. Appl. Mech.
,
91
(
9
), pp.
3725
3738
.
10.
Zhao
,
T. Z.
,
Shi
,
D. W.
,
Yao
,
Z. H.
,
Mao
,
H. Y.
,
Cheng
,
S. X.
, and
Peng
,
H.
,
2015
, “
Crack Spacing Threshold of Double Cracks Propagation for Large-Module Rack
,”
J. Cent. South Univ.
,
22
(
7
), pp.
2533
2539
.
11.
Wang
,
C.
, and
Gu
,
Y.
,
2022
, “
Research on Infrared Nondestructive Detection of Small Wind Turbine Blades
,”
Results Eng.
,
15
(
2
), p.
100570
.
12.
Ye
,
H.
,
Huang
,
R.
,
Zhou
,
Y.
, and
Liu
,
J.
,
2022
, “
Calibration of Paris Law Constants for Crack Propagation Analysis of Damaged Steel Plates Strengthened With Prestressed CFRP
,”
Theor. Appl. Fract. Mec.
,
117
(
4
), p.
103208
.
13.
Jiang
,
Z.
, and
Xing
,
Y.
,
2022
, “
Load Mitigation Method for Wind Turbines During Emergency Shutdowns
,”
Renewable Energy
,
185
(
6
), pp.
978
995
.
14.
Dong
,
G.-H.
,
Guo
,
S.-A.
, and
Bi
,
C.-W.
,
2024
, “
Numerical Study on the Flow Characteristics of an Integrated Fish Cage Based on the Monopile Offshore Wind Turbine Foundation
,”
Aquacult. Eng.
,
107
(
1
), p.
102458
.
15.
Chen
,
Z. J.
,
Chen
,
X. E.
, and
Liu
,
T.
,
2019
, “
The Effect of Different Parameterization Schemes for the Maximum Wind Speed and the Lowest sea-Level Pressure of the Typical Typhoon for Southern Yellow Sea Area
,”
Period. Ocean Univ. China
,
49
(
3
), pp.
28
35
.
16.
Bo
,
J.
,
Jie
,
D.
,
He
,
W.
,
Jiang
,
X.
,
Qin
,
Y.
, and
Zhang
,
J.
,
2017
, “
Wave Energy Resource Assessment Along Bohai Sea, Yellow Sea and East China Sea
,”
Acta Energ. Sol. Sin.
,
38
(
06
), pp.
1711
1716
.
17.
Li
,
G. Y.
,
Qiu
,
W. B.
,
Hu
,
Y. Q.
, and
Wang
,
Y. D.
,
2001
, “
Analysis of Annual Wave Characteristics in the Sea Area Near the Yangtze Estuary
,”
Trans. Oceanol. Limnol.
,
44
(
04
), pp.
17
22
.
18.
Wang
,
M.
,
Zhang
,
W.-Q.
,
Wang
,
P.-G.
, and
Du
,
X.-L.
,
2023
, “
Multiple Hazards Vibration Control of Jacket Offshore Wind Turbines Equipped With Amplifying Damping Transfer Systems: Winds, Waves, and Earthquakes
,”
Ocean Eng.
,
285
(
3
), p.
115355
.
19.
Pengfei
,
L.
,
Yingjie
,
Y.
,
Longhai
,
Z.
,
Rijun
,
H.
,
Yanjun
,
Y.
, and
Xing
,
L.
,
2022
, “
Distribution, Transport and Controlling Factors of Suspended Sediment Near Rizhao in the West of South Yellow Sea
,”
Mar. Geol. Quat. Geol.
,
42
(
3
), pp.
36
49
.
20.
Wu
,
Z. L.
,
Huang
,
L. M.
,
Wang
,
F.
,
Zhang
,
S. M.
, and
Zhang
,
S. Y.
,
2021
, “
Impacts of Tropical Cyclones on Mussel Culture Area and Yield in Shengsi
,”
J. Agric. Sci. Technol.
,
23
(
6
), pp.
171
183
(in Chinese).
21.
Abdelbaset
,
H.
,
Cheng
,
B.
,
Xiang
,
S.
, and
Tian
,
L.
,
2023
, “
An Investigation on Fatigue Crack Propagation Behavior of Welded Connections in UHPC Reinforced OSDs Using 3D Crack Simulation
,”
Structures
,
50
, pp.
1527
1544
.
22.
Huang
,
H.
,
Liu
,
Q.
,
Yue
,
M.
,
Miao
,
W.
,
Wang
,
P.
, and
Li
,
C.
,
2023
, “
Fully Coupled Aero-Hydrodynamic Analysis of a Biomimetic Fractal Semi-Submersible Floating Offshore Wind Turbine Under Wind-Wave Excitation Conditions
,”
Renewable Energy
,
203
(
3
), pp.
280
300
.
23.
Xue
,
Z.
,
Wang
,
W.
,
Fang
,
L.
, and
Zhou
,
J.
,
2020
, “
Numerical Simulation on Structural Dynamics of 5 MW Wind Turbine
,”
Renewable Energy
,
162
(
174
), pp.
222
233
.
24.
Wang
,
H.
,
Ke
,
S.
,
Wang
,
T.
, and
Zhu
,
S.
,
2020
, “
Typhoon-Induced Vibration Response and the Working Mechanism of Large Wind Turbine Considering Multi-Stage Effects
,”
Renewable Energy
,
153
(
1
), pp.
740
758
.
25.
Qin
,
M.
,
Shi
,
W.
,
Chai
,
W.
,
Fu
,
X.
,
Li
,
L.
, and
Li
,
X.
,
2023
, “
Extreme Structural Response Prediction and Fatigue Damage Evaluation for Large-Scale Monopile Offshore Wind Turbines Subject to Typhoon Conditions
,”
Renewable Energy
,
208
(
1
), pp.
450
464
.
26.
Li
,
B.
,
Shi
,
H.
,
Rong
,
K.
,
Geng
,
W.
, and
Wu
,
Y.
,
2023
, “
Fatigue Life Analysis of Offshore Wind Turbine Under the Combined Wind and Wave Loadings Considering Full-Directional Wind Inflow
,”
Ocean Eng.
,
281
(
7
), p.
114719
.
27.
Shih
,
Y. S.
, and
Wu
,
G. Y.
,
2002
, “
Effect of Vibration on Fatigue Crack Growth of an Edge Crack for a Rectangular Plate
,”
Int. J. Fatigue
,
24
(
5
), pp.
557
566
.
28.
Hellum
,
V.
,
Lassen
,
T.
, and
Spagnoli
,
A.
,
2021
, “
Crack Growth Models for Multiaxial Fatigue in a Ship's Propeller Shaft
,”
Eng. Fail. Anal.
,
127
(
1
), p.
105470
.
29.
Lykins
,
C. D.
,
Mall
,
S.
, and
Jain
,
V.
,
2001
, “
A Shear Stress-Based Parameter for Fretting Fatigue Crack Initiation
,”
Fatigue Fract. Eng. Mater. Struct.
,
24
(
7
), pp.
461
473
.
30.
Skorupa
,
M.
,
Machniewicz
,
T.
,
Schijve
,
J.
, and
Skorupa
,
A.
,
2007
, “
Application of the Strip-Yield Model From the NASGRO Software to Predict Fatigue Crack Growth in Aluminium Alloys Under Constant and Variable Amplitude Loading
,”
Eng. Fract. Mech.
,
74
(
3
), pp.
291
313
.
31.
Qu
,
A.
, and
Li
,
F.
,
2023
, “
Residual Life Prediction of Compressor Impeller With Microcrack Damage
,”
Mech. Based Des. Struct. Mach.
,
52
(
6
), pp.
1
16
.
32.
Paris
,
P.
, and
Erdogan
,
F.
,
1963
, “
A Critical Analysis of Crack Propagation Laws
,”
ASME J. Fluids Eng.
,
85
(
4
), pp.
528
533
. doi.org/10.1115/1.3656900
33.
Tanaka
,
K.
,
1974
, “
Fatigue Crack Propagation From a Crack Inclined to the Cyclic Tensile Axis
,”
Eng. Fract. Mech.
,
6
(
3
), pp.
493
507
.
34.
Benedetti
,
M.
,
Fontanari
,
V.
, and
Santus
,
C.
,
2013
, “
Crack Growth Resistance of MAG Butt-Welded Joints of S355JR Construction Steel
,”
Eng. Fract. Mech.
,
108
, pp.
305
315
.
35.
Rettenmeier
,
P.
,
Roos
,
E.
,
Weihe
,
S.
, and
Schuler
,
X.
,
2016
, “
Assessment of Mixed Mode Crack Propagation of Crane Runway Girders Subjected to Cyclic Loading
,”
Eng. Fract. Mech.
,
153
(
8
), pp.
11
24
.
36.
Qu
,
A.
, and
Li
,
F.
,
2023
, “
Influence of 3D Printing on Compressor Impeller Fatigue Crack Propagation Life
,”
Int. J. Mech. Sci.
,
245
(
7785
), p.
108107
.
37.
Liu
,
J.
,
Liu
,
M.
,
Ma
,
S.
, and
Tu
,
J.
,
2023
, “
Study on In-Plane Double-Crack Propagation in the Rib-to-Deck Welded Toe of Steel-Bridge
,”
J. Constr. Steel Res.
,
203
(
6
), p.
107838
.
You do not currently have access to this content.