Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Accurate prediction of nonlinear wave loading is crucial for designing marine and offshore structures, yet it remains a challenging task. Prior research has primarily focused on unidirectional extreme sea states, revealing that linear loading cannot accurately represent the total wave forces acting on offshore wind turbine foundations, with significant contributions from high-order harmonics. This study broadens the scope to include multidirectional and bidirectional wave interactions with monopile offshore wind turbine foundations. We use a phase-based harmonic separation method to isolate harmonic components in the presence of complex wave scenarios. This approach allows for the clear delineation of individual harmonics from the total wave force by controlling the phase of incident-focused waves. Remarkably, this method is effective even with multidirectional and bidirectional spreading. The clean separation of individual harmonics enables the estimation of contributions from each harmonic. Our findings are in line with previous research, showing that nonlinear loading can constitute up to 40% of the total under certain wave conditions. We have also observed that wider wave spreading reduces nonlinear high-order harmonics, and unidirectional waves induce the most severe nonlinear forces. These insights emphasize the importance of accounting for high-order nonlinear wave loading in offshore structure design.

References

1.
Chen
,
L. F.
,
Zang
,
J.
,
Taylor
,
P. H.
,
Sun
,
L.
,
Morgan
,
G. C. J.
,
Grice
,
J.
,
Orszaghova
,
J.
, and
Tello Ruiz
,
M.
,
2018
, “
An Experimental Decomposition of Nonlinear Forces on a Surface-Piercing Column: Stokes-Type Expansions of the Force Harmonics
,”
J. Fluid Mech.
,
848
, pp.
42
77
.
2.
Molin
,
B.
,
1979
, “
Second-Order Diffraction Loads Upon Three-Dimensional Bodies
,”
Appl. Ocean Res.
,
1
(
4
), pp.
197
202
.
3.
Eatock Taylor
,
R.
, and
Hung
,
S. M.
,
1987
, “
Second Order Diffraction Forces on a Vertical Cylinder in Regular Waves
,”
Appl. Ocean Res.
,
9
(
1
), pp.
19
30
.
4.
Newman
,
J. N.
,
1996
,
Nonlinear Scattering of Long Waves by a Vertical Cylinder
,
Springer
,
Dordrecht, Netherlands
, pp.
91
102
.
5.
Faltinsen
,
O. M.
,
Newman
,
J. N.
, and
Vinje
,
T.
,
1995
, “
Nonlinear Wave Loads on a Slender Vertical Cylinder
,”
J. Fluid Mech.
,
289
, pp.
179
198
.
6.
Huseby
,
M.
, and
Grue
,
J.
,
2000
, “
An Experimental Investigation of Higher-Harmonic Wave Forces on a Vertical Cylinder
,”
J. Fluid Mech.
,
414
, pp.
75
103
.
7.
Chaplin
,
J. R.
,
Rainey
,
R. C. T.
, and
Yemm
,
R. W.
,
1997
, “
Ringing of a Vertical Cylinder in Waves
,”
J. Fluid Mech.
,
350
, pp.
119
147
.
8.
Grue
,
J.
, and
Huseby
,
M.
,
2002
, “
Higher Harmonic Wave Forces and Ringing of Vertical Cylinders
,”
Appl. Ocean Res.
,
24
(
4
), pp.
203
214
.
9.
Riise
,
B. H.
,
Grue
,
J.
,
Jensen
,
A.
, and
Johannessen
,
T. B.
,
2018
, “
High Frequency Resonant Response of a Monopile in Irregular Deep Water Waves
,”
J. Fluid Mech.
,
853
, pp.
564
586
.
10.
Mj
,
D.
,
McAllister
,
M. L.
,
Bredmose
,
H.
,
Adcock
,
T. A. A.
, and
Taylor
,
P. H.
,
2023
, “
Harmonic Structure of Wave Loads on a Surface Piercing Column in Directionally Spread and Unidirectional Random Seas
,”
J. Ocean Eng. Mar. Energy
,
9
(
3
), pp.
415
433
.
11.
Fitzgerald
,
C. J.
,
Taylor
,
P. H.
,
Eatock Taylor
,
R.
,
Grice
,
J.
, and
Zang
,
J.
,
2014
, “
Phase Manipulation and the Harmonic Components of Ringing Forces on a Surface-Piercing Column
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
470
(
2168
), p.
20130847
.
12.
Tang
,
T.
,
Ding
,
H.
,
Dai
,
S.
,
Chen
,
X.
,
Taylor
,
P.
,
Zang
,
J.
, and
Adcock
,
T. A. A.
,
2024
, “
Data Informed Model Test Design With Machine Learning—An Example in Nonlinear Wave Load on a Vertical Cylinder
,”
ASME J. Offshore Mech. Arct. Eng.
,
146
(
2
), p.
021204
.
13.
Hersbach
,
H.
,
Bell
,
B.
,
Berrisford
,
P.
,
Hirahara
,
S.
,
Horányi
,
A.
,
Muñoz-Sabater
,
J.
,
Nicolas
,
J.
, et al
,
2020
, “
The ERA5 Global Reanalysis
,”
Q. J. R. Metereol. Soc.
,
146
(
730
), pp.
1999
2049
.
14.
Li
,
J.
,
Zhang
,
H.
,
Liu
,
S.
,
Fan
,
Y.
, and
Zang
,
J.
,
2022
, “
Experimental Investigations of Secondary Load Cycle Formation in Wave Force on a Circular Cylinder Under Steep Regular Waves
,”
Ocean Eng.
,
253
, p.
111265
.
15.
Lindgren
,
G.
,
1970
, “
Some Properties of a Normal Process Near a Local Maximum
,”
Ann. Math. Stat.
,
41
(
6
), pp.
1870
1883
.
16.
Boccotti
,
P.
,
1983
, “
Some New Results on Statistical Properties of Wind Waves
,”
Appl. Ocean Res.
,
5
(
3
), pp.
134
140
.
17.
Hasselmann
,
K.
,
Olbers
,
D.
, et al
,
1973
, “
Measurements of Wind-Wave Growth and Swell Decay During the Joint North Sea Wave Project (JONSWAP)
,”
Ergänzung zur Deut. Hydrogr. Z. Reihe A
,
12
(
8
), pp.
1
95
. 10013/epic.20654
18.
Lo
,
B. E.
, and
Mei
,
C. C.
,
1985
, “
A Numerical Study of Water-Wave Modulation Based on a Higher-Order Nonlinear Schrodinger Equation
,”
J. Fluid Mech.
,
150
, pp.
395
416
.
19.
Baldock
,
T. E.
,
Swan
,
C.
, and
Taylor
,
P. H.
,
1996
, “
A Laboratory Study of Nonlinear Surface Waves on Water
,”
Philos. Trans. R. Soc., A
,
354
(
1707
), pp.
649
676
.
20.
Longuet-Higgins
,
M. S.
,
Cartwright
,
D. E.
, and
Smith
,
N. D.
,
1963
, “Observations of the Directional Spectrum of Sea Waves Using the Motions of Floating Buoy,”
Ocean Wave Spectra
,
Prentice-Hall Inc.
,
Englewood Cliffs, NJ
, pp.
111
136
.
21.
Ji
,
X.
,
Liu
,
S.
,
Li
,
J.
, and
Jia
,
W.
,
2015
, “
Experimental Investigation of the Interaction of Multidirectional Irregular Waves With a Large Cylinder
,”
Ocean Eng.
,
93
, pp.
64
73
.
22.
Ji
,
X.
,
Liu
,
S.
,
Bingham
,
H. B.
, and
Li
,
J.
,
2015
, “
Multi-Directional Random Wave Interaction With an Array of Cylinders
,”
Ocean Eng.
,
110
, pp.
62
77
.
23.
Stokes
,
G. G.
,
1847
, “
On the Theory of Oscillatory Waves
,”
Trans. Cambridge Philos. Soc.
,
8
, pp.
441
455
.
24.
Zang
,
J.
,
Gibson
,
R.
,
Taylor
,
P. H.
,
Eatock Taylor
,
R.
, and
Swan
,
C.
,
2006
, “
Second Order Wave Diffraction Around a Fixed Ship-Shaped Body in Unidirectional Steep Waves
,”
ASME J. Offshore Mech. Arct. Eng.
,
128
(
2
), pp.
89
99
.
25.
Adcock
,
T. A. A.
,
Feng
,
X.
,
Tang
,
T.
,
Van Den Bremer
,
T. S.
,
Day
,
S.
,
Dai
,
S.
,
Li
,
Y.
,
Lin
,
Z.
,
Xu
,
W.
, and
Taylor
,
P. H.
,
2019
, “
Application of Phase Decomposition to the Analysis of Random Time Series From Wave Basin Tests
,”
Proc. Int. Conf. Offshore Mech. Arct. Eng.
,
9
, pp.
1
10
.
26.
Tang
,
T.
,
Ryan
,
G.
,
Ding
,
H.
,
Chen
,
X.
,
Zang
,
J.
,
Taylor
,
P. H.
, and
Adcock
,
T. A. A.
,
2024
, “
A New Gaussian Process Based Model for Non-Linear Wave Loading on Vertical Cylinders
,”
Coast. Eng.
,
188
, p.
104427
.
You do not currently have access to this content.