Abstract

Sea spray icing on ships and marine structures depends on a complex correlation between metocean parameters and vessel characteristics. Sea spray icing rates have mostly been investigated and given as a function of general metocean parameters. The existing models suffer from the lack of experimental data. More experimental data are required for better prediction models and understanding of the icing process. This article presents results from a comprehensive cold laboratory study of the dependence and trends of sea spray icing rates related to eight parameters. Experiments were performed simulating sea spray from a nozzle toward a vertical surface in the freezing environment. This study presents 20 unique tests structured into eight experiments, each of which focuses on change in icing rates due to one independent variable. Results showed that the sea spray rate dependence of the investigated parameters complies with the existing knowledge; however, preliminary analysis points out various unintentional covariates for most experiments that call for further investigations. This is the greatest number of variables tested in one set of experiments to date and serves as valuable sea spray icing data experimental data—a limitation for the evaluation of previous models that pointed out the lack of enough icing measurements in this field of research.

References

1.
Samuelsen
,
E. M.
, and
Graversen
,
R. G.
,
2019
, “
Weather Situation During Observed Ship-Icing Events Off the Coast of Northern Norway and the Svalbard Archipelago
,”
Weather Clim. Extrem.
,
24
(
9293
), p.
100200
.
2.
Kulyakhtin
,
A.
,
2014
, “
Numerical Modelling and Experiments on Sea Spray Icing
,”
Doctoral thesis
,
Department of Civil and Transport Engineering, Norwegian University of Science and Technology (NTNU)
,
Norway
.
3.
Deshpande
,
S.
,
Sæterdal
,
A.
, and
Sundsbø
,
P.-A.
,
2021
, “
Sea Spray Icing: The Physical Process and Review of Prediction Models and Winterization Techniques
,”
ASME J. Offshore Mech. Arct. Eng.
,
143
(
6
), p.
061601
.
4.
Kulyakhtin
,
A.
, and
Tsarau
,
A.
,
2014
, “
A Time-Dependent Model of Marine Icing With Application of Computational Fluid Dynamics
,”
Cold Reg. Sci. Technol.
,
104–105
, pp.
33
44
.
5.
Horjen
,
I.
,
2013
, “
Numerical Modeling of Two-Dimensional Sea Spray Icing on Vessel-Mounted Cylinders
,”
Cold Reg. Sci. Technol.
,
93
, pp.
20
35
.
6.
Forest
,
T. W.
,
Lozowski
,
E. P.
, and
Gagnon
,
R.
,
2005
, “
Estimating Marine Icing on Offshore Structures Using RIGICE04
,”
Proceedings of the International Workshop on Atmospheric Icing on Structures (IWAIS)
,
Montreal, Canada
,
June
.
7.
Samuelsen
,
E. M.
,
Edvardsen
,
K.
, and
Graversen
,
R. G.
,
2017
, “
Modelled and Observed Sea-Spray Icing in Arctic-Norwegian Waters
,”
Cold Reg. Sci. Technol.
,
134
, pp.
54
81
.
8.
Overland
,
J. E.
,
1990
, “
Prediction of Vessel Icing for Near-Freezing Sea Temperatures
,”
Weather Forecast.
,
5
(
1
), pp.
62
77
.
9.
Stallabrass
,
1980
, “Trawler Icing—A Compilation of Work Done at N. R. C.,” National Research Council Canada, Ottawa, Canada, Mech. Eng. Rep. MD-56, N.R.C. No. 19372, .
10.
Overland
,
J. E.
,
Pease
,
C. H.
,
Preisendorfer
,
R. W.
, and
Comiskey
,
A. L.
,
1986
, “
Prediction of Vessel Icing
,”
J. Clim. Appl. Meteorol.
,
25
(
12
), pp.
1793
1806
.
11.
Ryerson
,
C. C.
,
1995
, “
Superstructure Spray and Ice Accretion on a Large U.S. Coast Guard Cutter
,”
Atmos. Res.
,
36
(
3–4
), pp.
321
337
.
12.
Stallabrass
,
J.
, and
Hearty
,
P.
,
1967
, “The Icing of Cylinders in Conditions of Simulated Freezing Sea Spray,” Report No. MD-50, Technical Report at the National Research Council of Canada, Ottawa.
13.
Dehghani-Sanij
,
A.
,
Mahmoodi
,
M.
,
Dehghani
,
S. R.
,
Muzychka
,
Y. S.
, and
Naterer
,
G. F.
,
2019
, “
Experimental Investigation of Vertical Marine Surface Icing in Periodic Spray and Cold Conditions
,”
ASME J. Offshore Mech. Arct. Eng.
,
141
(
2
), p.
021502
.
14.
Kulyakhtin
,
A.
, and
Løset
,
S.
,
2011
, “
Sea Spray Icing: In-Cloud Evaporation. Semi-Analytical and Numerical Investigations
,”
Proceedings of the 14th International Workshop on Atmospheric Icing of Structures
,
Chongqing, China
,
May 8–13
.
15.
Kulyakhtin
,
A.
,
Shipilova
,
O.
,
Libby
,
B.
, and
Løset
,
S.
,
2012
, “
Full-Scale 3D CFD Simulation of Spray Impingement on a Vessel Produced by Ship-Wave Interaction
,”
The 21st IAHR International Symposium on Ice
,
Dalian, China
,
June 11–15
pp.
1129
1141
.
16.
Hyldgård
,
A.
,
Mortensen
,
D.
,
Birkelund
,
K.
,
Hansen
,
O.
, and
Thomsen
,
E. V.
,
2008
, “
Autonomous Multi-Sensor Micro-System for Measurement of Ocean Water Salinity
,”
Sens. Actuator A Phys.
,
147
(
2
), pp.
474
484
.
17.
Dehghani-sanij
,
A.
,
Muzychka
,
Y. S.
, and
Naterer
,
G. F.
,
2015
, “
Proceedings of the ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering
,”
OMAE2015
,
St. John's. Newfoundland, Canada
,
May 31–June 5
, pp.
1
7
.
18.
Jones
,
K. F.
, and
Andreas
,
E. L.
,
2012
, “
Sea Spray Concentrations and the Icing of Fixed Offshore Structures
,”
Q. J. R. Meteorol. Soc.
,
138
(
662
), pp.
131
144
.
19.
Brohez
,
S.
,
Delvosalle
,
C.
, and
Marlair
,
G.
,
2004
, “
A Two-Thermocouples Probe for Radiation Corrections of Measured Temperatures in Compartment Fires
,”
Fire Saf. J.
,
39
(
5
), pp.
399
411
.
20.
CSGNetwork
,
2011
, “Water Density Calculator,” http://www.csgnetwork.com/h2odenscalc.html, Accessed Sep. 14, 2022.
21.
Matlab_Documentation
, “Filtering and Smoothing Data—MATLAB & Simulink—MathWorks Nordic,” https://se.mathworks.com/help/curvefit/smoothing-data.html, Accessed Aug. 16, 2022.
22.
Brown
,
R. D.
, and
Agnew
,
T.
,
1985
, “
Characteristics of Marine Icing in Canadian Waters
,”
Proceedings of the International Workshop on Offshore Winds and Icing
,
Halifax, Nova Scotia, Canada
, pp.
78
94
.
23.
Chang
,
X.
,
Liu
,
W.
,
Zuo
,
G.
,
Dou
,
Y.
, and
Li
,
Y.
,
2021
, “
Research on Ultrasonic-Based Investigation of Mechanical Properties of Ice
,”
Acta Oceanol. Sin.
,
40
(
10
), pp.
97
105
.
24.
ISO 19906
,
2019
,
Petroleum and Natural Gas Industries—Arctic Offshore Structures
, 2nd ed.,
International Organization for Standardization
.
25.
Ortiz
,
M. C.
,
Sarabia
,
L. A.
,
Sánchez
,
M. S.
, and
Herrero
,
A.
,
2009
, “Quality of Analytical Measurements: Statistical Methods for Internal Validation,”
Comprehensive Chemometrics
,
S. D.
Brown
,
R.
Tauler
, and
B.
Walczak
, eds., Vol.
1
,
Elsevier
,
New York
, pp.
17
76
.
26.
Ferraris
,
S.
, and
Volpone
,
L. M.
,
2005
, “
Aluminium Alloys in Third Millennium Shipbuilding: Materials, Technologies, Perspectives
,”
The Fifth International Forum on Aluminium Ships
,
Tokyo, Japan
,
Oct. 11–13
.
27.
Suzuki
,
S.
,
Muraoka
,
R.
,
Obinata
,
T.
,
Endo
,
S.
,
Horita
,
T.
, and
Omata
,
K.
,
2004
, “
Steel Products for Shipbuilding
,”
JFE Tech. Rep.
,
2
, p.
41
.
28.
VikingNorsafe
,
2021
, “VIKING Norsafe Life-Saving Equipment Norway AS MATHILDA-74,” VIKING Doc. No.: TSB-0045, Rev. No. 3, https://myviking.viking-life.com/en/Boats-and-davits/Boats/Conventional-lifeboats/p/P0301001030, Accessed August 15, 2022.
29.
RolledMetalProducts
,
2017
, “Aluminum 5052 Data Sheet,” rolledmetalproducts.com/wp-content/uploads/docs/Aluminum5052.pdf, Accessed April 7, 2022
30.
Bhatti
,
A. A.
,
Barsoum
,
Z.
,
Murakawa
,
H.
, and
Barsoum
,
I.
,
2015
, “
Influence of Thermo-mechanical Material Properties of Different Steel Grades on Welding Residual Stresses and Angular Distortion
,”
Mater. Des.
,
65
, pp.
878
889
.
31.
Vaggar
,
G. B.
,
Kamate
,
S. C.
, and
Badyankal
,
P. V.
,
2018
, “
Thermal Properties Characterization of Glass Fiber Hybrid Polymer Composite Materials
,”
Int. J. Eng. Technol.
,
7
(
3.34
), p.
455
.
32.
Wang
,
S.
, and
Qiu
,
J.
,
2010
, “
Enhancing Thermal Conductivity of Glass Fiber/Polymer Composites Through Carbon Nanotubes Incorporation
,”
Compos. Part B Eng.
,
41
(
7
), pp.
533
536
.
33.
Li
,
L.
,
Liu
,
Y.
,
Zhang
,
Z.
, and
Hu
,
H.
,
2019
, “
Effects of Thermal Conductivity of Airframe Substrate on the Dynamic Ice Accretion Process Pertinent to UAS Inflight Icing Phenomena
,”
Int. J. Heat Mass Transfer
,
131
, pp.
1184
1195
.
34.
Lozowski
,
E. P.
,
Szilder
,
K.
, and
Makkonen
,
L.
,
2000
, “
Computer Simulation of Marine Ice Accretion
,”
Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
,
358
(
1776
), pp.
2811
2845
.
35.
Dawson
,
P.
, and
Dawson
,
S. L.
,
2016
, “
Sharing Successes and Hiding Failures: ‘Reporting Bias’ in Learning and Teaching Research
,”
Stud. High. Educ.
,
43
(
8
), pp.
1405
1416
.
36.
Horjen
,
I.
, and
Vefsnmo
,
S.
,
1984
, “
Mobile Platform Stability (MOPS) Subproject 02—Icing (MOPS Report No. 15)
,” Technical Report at the ‘Norsk Hydroteknisk Lab’, Trondheim, Norway.
37.
Brown
,
R. D.
, and
Roebber
,
P.
,
1985
, “
The Scope of the Ice Accretion Problem in Canadian Waters Related to Offshore Energy and Transportation
,” Canadian Climate Centre Report on ‘The Ice Accretion Problem in Canadian Waters Related to Offshore Energy and Transportation’, Atmospheric Environment Service, Climatological Services Division.
38.
Zakrzewski
,
W. P.
,
1986
, “
Icing of Fishing Vessels. Part I: Splashing a Ship With Spray
,”
Proceedings of the 8th International IAHR Symposium on Ice
,
Iowa City
,
Aug. 18–22
, pp.
179
194
.
You do not currently have access to this content.