Abstract

The interaction between oblique water waves and floating bridge in the presence of a vertical partial flexible permeable barrier is studied under the assumption of the linear water wave theory in finite water depth. The associated mathematical problem is handled for a solution using the least-squares approximation method. The reflection and transmission coefficients, free surface elevation, wave force acting on the bridge and barrier are computed to study the effects of various wave and structural parameters for three different edge conditions. The study reveals that wave reflection decreases with an increase in porosity, and a reverse pattern is found in the case of wave transmission. As the normalized spacing between the barrier and the floating bridge increases, the reflection coefficient follows a periodically oscillatory pattern. Furthermore, it is noticed that regardless of the barrier configurations, the wave reflection increases for an increase in the angle of incidence. It is also found that the surface-piercing barrier is more efficient than the bottom-standing barrier as a wave barrier. Moreover, the results indicate that by placing a porous flexible barrier at an appropriate position, the wave force on the bridge can be reduced significantly.

References

1.
Bettess
,
P.
,
2004
, “
Short–Wave Scattering: Problems and Techniques
,”
Philos. Trans. R. Soc. London., Ser. A.
,
362
(
1816
), pp.
421
443
. 10.1098/rsta.2003.1329
2.
Vijay
,
K.
, and
Sahoo
,
T.
,
2018
, “
Retrofitting of Floating Bridges with Perforated Outer Cover for Mitigating Wave-Induced Responses
,”
ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering
,
Madrid, Spain
,
June 17–22
,
American Society of Mechanical Engineers Digital Collection
. http://dx.doi.org/10.1115/OMAE2018-77054
3.
Kreisel
,
G.
,
1949
, “
Surface Waves
,”
Q. Appl. Math.
,
7
(
1
), pp.
21
44
. 10.1090/qam/31924
4.
Penney
,
W. G.
,
Price
,
A. T.
,
Martin
,
J.
,
Moyce
,
W.
,
Penney
,
W. G.
,
Price
,
A.
, and
Thornhill
,
C.
,
1952
, “
Part I. The Diffraction Theory of Sea Waves and the Shelter Afforded by Breakwaters
,”
Philos. Trans. R. Soc. London. Ser. A, Math. Phys. Sci.
,
244
(
882
), pp.
236
253
. 10.1098/rsta.1952.0003
5.
Mei
,
C. C.
, and
Black
,
J. L.
,
1969
, “
Scattering of Surface Waves by Rectangular Obstacles in Waters of Finite Depth
,”
J. Fluid. Mech.
,
38
(
3
), pp.
499
511
. 10.1017/S0022112069000309
6.
McIver
,
P.
,
1986
, “
Wave Forces on Adjacent Floating Bridges
,”
Appl. Ocean Res.
,
8
(
2
), pp.
67
75
. 10.1016/S0141-1187(86)80001-3
7.
Söylemez
,
M.
, and
Gören
,
Ö.
,
2003
, “
Diffraction of Oblique Waves by Thick Rectangular Barriers
,”
Appl. Ocean Res.
,
25
(
6
), pp.
345
353
. 10.1016/j.apor.2004.04.001
8.
Manisha
,
Kaligatla
,
R.
, and
Sahoo
,
T.
,
2019
, “
Effect of Bottom Undulation for Mitigating Wave-Induced Forces on a Floating Bridge
,”
Wave Motion
,
89
, pp.
166
184
. 10.1016/j.wavemoti.2019.03.007
9.
Kar
,
P.
,
Sahoo
,
T.
, and
Behera
,
H.
,
2019
, “
Effect of Bragg Scattering Due to Bottom Undulation on a Floating Dock
,”
Wave Motion
,
90
, pp.
121
138
. 10.1016/j.wavemoti.2019.04.011
10.
Lee
,
M.
, and
Chwang
,
A.
,
2000
, “
Scattering and Radiation of Water Waves by Permeable Barriers
,”
Phys. Fluids.
,
12
(
1
), pp.
54
65
. 10.1063/1.870284
11.
Manam
,
S.
, and
Sivanesan
,
M.
,
2016
, “
Scattering of Water Waves by Vertical Porous Barriers: An Analytical Approach
,”
Wave Motion
,
67
, pp.
89
101
. 10.1016/j.wavemoti.2016.07.008
12.
Singla
,
S.
,
Martha
,
S.
, and
Sahoo
,
T.
,
2018
, “
Mitigation of Structural Responses of a Very Large Floating Structure in the Presence of Vertical Porous Barrier
,”
Ocean Eng.
,
165
, pp.
505
527
. 10.1016/j.oceaneng.2018.07.045
13.
Das
,
S.
, and
Bora
,
S. N.
,
2018
, “
Oblique Water Wave Damping by Two Submerged Thin Vertical Porous Plates of Different Heights
,”
Comput. Appl. Math.
,
37
(
3
), pp.
3759
3779
. 10.1007/s40314-017-0545-7
14.
Selvan
,
S. A.
,
Behera
,
H.
, and
Sahoo
,
T.
,
2019
, “
Reduction of Hydroelastic Response of a Flexible Floating Structure by an Annular Flexible Permeable Membrane
,”
J. Eng. Math.
,
118
(
1
), pp.
73
99
. 10.1007/s10665-019-10015-9
15.
Behera
,
H.
,
Gayathri
,
R.
, and
Selvan
,
S. A.
,
2020
, “
Wave Attenuation by Multiple Outer Porous Barriers in the Presence of An Inner Rigid Cylinder
,”
J. Waterway, Port, Coastal, and Ocean Eng.
,
146
(
1
), p.
04019035
. 10.1061/(ASCE)WW.1943-5460.0000534
16.
Williams
,
A.
, and
Wang
,
K.
,
2003
, “
Flexible Porous Wave Barrier for Enhanced Wetlands Habitat Restoration
,”
J. Eng. Mech.
,
129
(
1
), pp.
1
8
. 10.1061/(ASCE)0733-9399(2003)129:1(1)
17.
Wang
,
K.-H.
, and
Ren
,
X.
,
1993
, “
Water Waves on Flexible and Porous Breakwaters
,”
J. Eng. Mech.
,
119
(
5
), pp.
1025
1047
. 10.1061/(ASCE)0733-9399(1993)119:5(1025)
18.
Yip
,
T. L.
,
Sahoo
,
T.
, and
Chwang
,
A. T.
,
2002
, “
Trapping of Surface Waves by Porous and Flexible Structures
,”
Wave Motion
,
35
(
1
), pp.
41
54
. 10.1016/S0165-2125(01)00074-9
19.
Mandal
,
S.
,
Behera
,
H.
, and
Sahoo
,
T.
,
2016
, “
Oblique Wave Interaction with Porous, Flexible Barriers in a Two-layer Fluid
,”
J. Eng. Mech.
,
100
(
1
), pp.
1
31
. 10.1007/s10665-015-9830-x
20.
Behera
,
H.
,
Sahoo
,
T.
, and
Ng
,
C.-O.
,
2016
, “
Wave Scattering by a Partial Flexible Porous Barrier in the Presence of a Step-type Bottom Topography
,”
Coastal Eng. J.
,
58
(
3
), p.
1650008
. 10.1142/S057856341650008X
21.
Kaligatla
,
R.
,
Koley
,
S.
, and
Sahoo
,
T.
,
2015
, “
Trapping of Surface Gravity Waves by a Vertical Flexible Porous Plate Near a Wall
,”
Zeitschrift für angewandte Mathematik und Physik
,
66
(
5
), pp.
2677
2702
. 10.1007/s00033-015-0521-2
22.
Behera
,
H.
, and
Ng
,
C.-O.
,
2018
, “
Interaction Between Oblique Waves and Multiple Bottom-standing Flexible Porous Barriers Near a Rigid Wall
,”
Meccanica
,
53
(
4–5
), pp.
871
885
. 10.1007/s11012-017-0789-8
23.
Behera
,
H.
,
Mandal
,
S.
, and
Sahoo
,
T.
,
2013
, “
Oblique Wave Trapping by Porous and Flexible Structures in a Two-Layer Fluid
,”
Phys. Fluids.
,
25
(
11
), p.
112110
. 10.1063/1.4832375
24.
Sollitt
,
C. K.
, and
Cross
,
R. H
,
1976
,
Wave Reflection and Transmission at Permeable Breakwaters
,
US Army Coastal Engineering Research Center
,
Vancouver, British Columbia, Canada
.
25.
Li
,
Y.
,
Liu
,
Y.
, and
Teng
,
B.
,
2006
, “
Porous Effect Parameter of Thin Permeable Plates
,”
Coast. Eng. J.
,
48
(
4
), pp.
309
336
. 10.1142/S0578563406001441
26.
Van Gent
,
I.
,
1995
, “
Mra: Wave Interaction with Permeable Coastal Structures
”.
Dclft University of Technology, Communications on Hydraulic and Geotechnical Engineering
.
27.
Bhattacharjee
,
J.
, and
Soares
,
C. G.
,
2011
, “
Oblique Wave Interaction with a Floating Structure Near a Wall with Stepped Bottom
,”
Ocean Eng.
,
38
(
13
), pp.
1528
1544
. 10.1016/j.oceaneng.2011.07.011
28.
McIver
,
M.
,
1985
, “
Diffraction of Water Waves by a Moored, Horizontal, Flat Plate
,”
J. Eng. Math.
,
19
(
4
), pp.
297
319
. 10.1007/BF00042875
29.
Koley
,
S.
,
Kaligatla
,
R.
, and
Sahoo
,
T.
,
2015
, “
Oblique Wave Scattering by a Vertical Flexible Porous Plate
,”
Stud. Appl. Math.
,
135
(
1
), pp.
1
34
. 10.1111/sapm.12076
30.
Murai
,
M.
,
Kagemoto
,
H.
, and
Fujino
,
M.
,
1999
, “
On the Hydroelastic Responses of a Very Large Floating Structure in Waves
,”
J. Mar. Sci. Technol.
,
4
(
3
), pp.
123
153
. 10.1007/s007730050015
You do not currently have access to this content.