The application of thin-film coatings is a method to protect armatures, accessories, and control elements on offshore facilities against corrosion and mechanical damages. The performance of a dual-layer thin-film (30 μm) coating system under simulated Arctic offshore exposure was investigated. The coating system consisted of polyamide-based primer and molybdenum-disulfide (MoS2)/polytetrafluoroethylene (PTFE)—modified topcoat. The investigations involved the following tests: accelerated corrosion protection/aging tests, coating adhesion tests, scanning electron microscopy (SEM)/energy-dispersive X-ray (EDX) inspections, static contact angle measurements, specific surface energy measurements, hoarfrost accretion, and abrasion resistance tests. The test conditions were adapted to Arctic offshore conditions. Effects of accelerated offshore aging on surface morphology, surface chemistry, and hoarfrost accretion were also investigated.

References

1.
Momber
,
A. W.
,
Irmer
,
M.
,
Glück
,
N.
, and
Plagemann
,
P.
,
2016
, “
Corrosion Protection Performance of Organic Offshore Coating Systems at −60 °C Temperature Shock
,”
ASME J. Offshore Mech. Arct. Eng.
,
138
(
6
), p.
064501
.
2.
Momber
,
A. W.
,
Irmer
,
M.
, and
Glück
,
N.
,
2016
, “
Hoar Frost Accretion on Organic Coatings Under Offshore Conditions
,”
ASME J. Offshore Mech. Arct. Eng.
,
138
(
6
), p.
064502
.
3.
Momber
,
A. W.
,
Irmer
,
M.
, and
Glück
,
N.
,
2016
, “
Performance Characteristics of Protective Coatings Under Low-Temperature Offshore Conditions—Part 1: Experimental Set-Up and Corrosion Protection Performance
,”
Cold Reg. Sci. Technol.
,
127
, pp.
76
82
.
4.
Momber
,
A. W.
,
Irmer
,
M.
, and
Glück
,
N.
,
2016
, “
Performance Characteristics of Protective Coatings Under Low-Temperature Offshore Conditions—Part 2: Surface Status, Hoarfrost Accretion, and Mechanical Properties
,”
Cold Reg. Sci. Technol.
,
127
, pp.
109
114
.
5.
Momber
,
A. W.
,
Irmer
,
M.
,
Glück
,
N.
, and
Plagemann
,
P.
,
2016
, “
Abrasion Testing of Organic Corrosion Protection Coating Systems With a Rotating Abrasive Rubber Wheel
,”
Wear
,
348–349
, pp.
166
180
.
6.
Ryerson
,
C. C.
,
2008
, “
Assessment of Superstructure Ice Protection as Applied to Offshore Oil Operations Safety
,” Cold Regions Research and Engineering Laboratory, Hanover, NH, Report No.
ERDC/CRREL TR-08-14
.
7.
Bjoergum
,
A.
,
Knudsen
,
O. O.
,
Kvernbraten
,
A.-K.
,
Nilsen
,
N.-I.
, and
Fabrice
,
L.
,
2011
, “
Corrosion Protecting Coating Systems in Arctic Areas
,”
European Corrosion Congress Proceedings
(
EUROCORR
), Stockholm, Sweden, Sept. 4–8, pp. 708–720.
8.
Lyublinski
,
E.
,
Ye
,
V.
,
Begunova
,
G.
,
Kopilova
,
E.
,
Schultz
,
M.
, and
Singh
,
R.
,
2014
, “
Corrosion Protection of Flanges and Valves
,”
Int. J. Corros. Scale Inhib.
,
3
(
4
), pp.
279
285
.
9.
Pettarin
,
V.
,
Churruca
,
M. J.
,
Felhos
,
D.
,
Karger-Kocsis
,
J.
, and
Frontini
,
P. M.
,
2010
, “
Changes in Tribological Performance of High Molecular Weight High Density Polyethylene Induced by the Addition of Molybdenum Disulphide Particles
,”
Wear
,
269
(1–2), pp.
31
45
.
10.
Gradt
,
T.
, and
Theiler
,
G.
,
2009
, “
Influence of Solid Lubricant Fillers on the Tribological Behaviour of Peek Composites in Vacuum
,”
13th European Space Mechanisms and Tribology Symposium
(
ESMATS 13
), Vienna, Austria, Sept. 23–25, pp. 1–4.
11.
Panich
,
N.
,
Wangyao
,
P.
,
Hannongbua
,
S.
,
Sricharoenchai
,
P.
, and
Sun
,
Y.
,
2007
, “
Effect of Polytetrafluoroethylene Doping on Tribological Property Improvement of MoS2 Nano-Thin Films on Ti-Substrate
,”
Rev. Adv. Mater. Sci.
,
16
, pp.
88
95
.
12.
Rossi
,
S.
,
Chini
,
F.
,
Straffelini
,
G.
,
Bonora
,
P. L.
,
Moschini
,
R.
, and
Stampali
,
A.
,
2003
, “
Corrosion Protection Properties of Electroless Nickel/PTFE, Phosphate/MoS2 and Bronze/PTFE Coatings Applied to Improve the Wear Resistance of Carbon Steel
,”
Surf. Coat. Technol.
,
173
(2–3), pp.
235
242
.
13.
Momber
,
A. W.
,
2008
,
Blast Cleaning Technology
,
Springer
,
London
, Chap. 8.2.
14.
ISO
,
2009
, “
Paints and Varnishes—Performance Requirements for Protective Paint Systems for Offshore and Related Structures
,” International Standard Organization, Geneva, Switzerland, Standard No.
ISO 20340
.
15.
SSPC
,
2000
, “
Standard Method of Evaluating Degree of Rusting on Painted Steel Surfaces
,” Steel Structures Painting Council, Pittsburgh, PA, Standard No.
SSPC-VIS 2
.
16.
ASTM
,
2009
, “
Standard Test Method for Evaluating Degree of Blistering of Paints
,” ASTM International, West Conshohocken, PA, Standard No.
ASTM D714-02
.
17.
ISO
,
2012
, “
Paints and Varnishes—Evaluation of Degradation of Coatings—Designation of Quantity and Size of Defects, and of Intensity of Uniform Changes in Appearance—Part 8: Assessment of Degree of Delamination and Corrosion Around a Scribe or Other Artificial Defect
,” International Standard Organization, Geneva, Switzerland, Standard No.
ISO 4628-8
.
18.
ISO
,
2003
, “
Paints and Varnishes—Pull-Off Test for Adhesion
,” International Standard Organization, Geneva, Switzerland, Standard No.
ISO 4624
.
19.
DIN
,
2011
, “
Beschichtungsstoffe—Benetzbarkeit—Teil 2: Bestimmung der freien Oberflächenenergie fester Oberflächen durch Messung des Kontaktwinkels (Paint and Varnishes—Wettability—Part 2: Determination of the Free Surface Energy of Solid Surfaces by Measuring the Contact Angle)
,” Beuth-Verlag, Berlin, Standard No.
DIN 55660-2
.
20.
DIN
,
2011
, “
Beschichtungsstoffe—Benetzbarkeit—Teil 1: Begriffe und allgemeine Grundlagen (Paints and Varnishes—Wettability—Part 1: Terminology and General Principles)
,” Beuth-Verlag, Berlin, Standard No. DIN 55660-1.
21.
Momber
,
A. W.
,
Irmer
,
M.
, and
Glück
,
N.
,
2017
, “
A Note on the Distribution of Stationary Contact Angles on Organic Coatings
,”
Int. J. Adhes. Adhes.
,
72
, pp.
1
5
.
22.
ISO
,
1998
, “
Geometrical Product Specification (GPS)—Surface Texture: Profile Method—Nominal Characteristics of Contact (Stylus) Instruments
,” International Standard Organization, Geneva, Switzerland, Standard No.
ISO 3274
.
23.
ISO
,
1997
, “
Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Terms, Definitions and Surface Texture Parameters
,” International Standard Organization, Geneva, Switzerland, Standard No.
ISO 4287
.
24.
NACE
,
2004
, “
Offshore Platform Atmospheric and Splash Zone New Construction Coating System Evaluation
,” Standard Test Method, NACE International, Houston, TX, Standard No.
NACE TM 0404
.
25.
ISO
,
2006
, “
Paints and Varnishes—Determination of Resistance to Abrasion—Part 2: Method With Abrasive Rubber Wheels and Rotating Test Specimen
,” International Standard Organization, Geneva, Switzerland, Standard No.
ISO 7784-2
.
26.
ISO
,
2007
, “
Paints and Varnishes: Determination of Film Thickness
,” International Standard Organization, Geneva, Switzerland, Standard No.
ISO 2808
.
27.
Kalenda
,
P.
,
Kalendová
,
A.
,
Štengl
,
V.
,
Antoš
,
P.
,
Šubrt
,
J.
,
Kváca
,
Z.
, and
Bakardjieva
,
S.
,
2004
, “
Properties of Surface-Treated Mica in Anticorrosive Coatings
,”
Prog. Org. Coat.
,
49
(
2
), pp.
137
145
.
28.
Momber
,
A. W.
,
Plagemann
,
P.
, and
Stenzel
,
V.
,
2015
, “
Performance and Integrity of Protective Coating Systems for Offshore Wind Power Structures After Three Years Under Offshore Site Conditions
,”
Renewable Energy
,
74
, pp.
606
617
.
29.
Sen
,
S. H.
,
Sahin
,
H.
,
Peeters
,
F. M.
, and
Durgun
,
E.
,
2014
, “
Monolayers of MoS2 as an Oxidation Protective Nanocoating Material
,”
J. Appl. Phys.
,
116
(
8
), p.
083508
.
30.
Sørensen
,
P. A.
,
Kiil
,
S.
,
Dam-Johansen
,
K.
, and
Weinell
,
C. E.
,
2009
, “
Anticorrosive Coatings: A Review
,”
J. Coat. Technol. Res.
,
6
(
2
), pp.
135
176
.
31.
Zorll
,
U.
,
1984
, “
Korrosionsschutz mit Hilfe organischer Schutzschichten und deren Charakterisierung
,”
Fresenius Z. Anal. Chem.
,
319
(6), pp.
675
681
.
32.
Al-Turaif
,
H. A.
,
2013
, “
Surface Morphology and Chemistry of Epoxy-Based Coatings After Exposure to Ultraviolet Radiation
,”
Prog. Org. Coat.
,
76
(
4
), pp.
677
681
.
33.
Rosu
,
D.
,
Rosu
,
L.
,
Mustata
,
F.
, and
Varganici
,
C. D.
,
2012
, “
Effect of UV Radiation on Some Semi-Interpenetrating Polymer Networks Based on Polyurethane and Epoxy Resin
,”
Polym. Degrad. Stab.
,
97
(
8
), pp.
1261
1269
.
34.
Ghasemi-Kahrizsangi
,
A.
,
Neshati
,
J.
,
Shariatpanahi
,
H.
, and
Akbarinezhad
,
E.
,
2015
, “
Improving the UV Degradation Resistance of Epoxy Coatings Using Modified Carbon Black Nanoparticles
,”
Prog. Org. Coat.
,
85
, pp.
199
207
.
35.
Monney
,
L.
,
Rouge
,
N.
,
Duboisa
,
C.
, and
Chambaudeta
,
A.
,
1998
, “
Photo-Chemical Degradation Study of an Epoxy Material by X-Ray Analysis
,”
Polym. Degrad. Stab.
,
62
(
2
), pp.
367
371
.
36.
Ehrenstein
,
G. W.
,
2007
,
Mit Kunststoffen konstruieren, Abschnitt 1.1
, 3rd ed.,
Carl Hanser Verlag
,
München, Germany
.
37.
Glöckner
,
P.
,
Ritter
,
H.
,
Osterhold
,
M.
,
Buhk
,
M.
, and
Schlesing
,
M.
,
1999
, “
Effect of Weathering on Physical Properties of Clearcoats
,”
Angew. Makromol. Chem.
,
269
(
1
), pp.
71
77
.
38.
Kuang
,
P.
, and
Constant
,
K.
,
2015
, “
Increased Wettability and Surface Free Energy of Polyurethane by Ultraviolet Ozone Treatment
,”
Wetting and Wettability
,
M.
Aliofkhazraei
, ed.,
InTech
,
Rijeka, Croatia
, pp.
85
103
.
39.
Keller
,
S.
,
Haefliger
,
D.
, and
Boisen
,
A.
,
2007
, “
Optimized Plasma-Deposited Fluorocarbon Coating for Dry Release and Passivation of Thin SU-8 Cantilevers
,”
J. Vac. Sci. Technol. B
,
25
(
6
), pp.
1903
1908
.
40.
Gaur
,
A. P.
,
Sahoo
,
S.
,
Ahmadi
,
M.
,
Dash
,
S. P.
,
Guinel
,
M. J.
, and
Katiyar
,
R. S.
,
2014
, “
Surface Energy Engineering for Tunable Wettability Through Controlled Synthesis of MoS2
,”
Nano Lett.
,
14
(
8
), pp.
4314
4321
.
41.
Tavana
,
H.
,
2011
, “
Hydrodynamic Status of Contact Angles
,”
Applied Surface Thermodynamics
,
A. W.
Neumann
,
R.
David
, and
Y.
Zuo
, eds.,
CRC Press
,
Boca Raton, FL
, pp.
329
422
.
42.
Cambruzzi
,
A.
,
Rossi
,
S.
, and
Deflorian
,
F.
,
2005
, “
Reduction on Protective Properties of Organic Coatings Produced by Abrasive Particles
,”
Wear
,
258
(11–12), pp.
1696
1705
.
You do not currently have access to this content.