The LargeE Admissible Perturbation (LEAP) methodology is developed further to solve static stress redesign problems. The static stress general perturbation equation, which expresses the unknown nodal stresses of the objective structure in terms of the baseline structure stresses, is derived first. This equation depends on the redesign variables for each element or group of elements; namely, the cross-sectional area and moment of inertia, and the distance between the neutral axis and the outer fiber of the cross section. This equation preserves the shape of the cross section in the redesign process. LEAP enables the designer to redesign a structure to achieve specifications on modal properties, static displacements, forced response amplitudes, and static stresses. LEAP is implemented in code RESTRUCT which post-processes the FEA results of the baseline structure. Changes on the order of 100% in the above performance particulars and in redesign variables can be achieved without repetitive finite element (FE) analyses. Several numerical applications on a simple cantilever beam and an offshore tower are used to verify the LEAP algorithm for stress redesign.

1.
Choi
,
K. K.
,
Haug
,
E. J.
, and
Seong
,
H. G.
, 1983, “
An Iterative Method for Finite Dimensional Structural Optimization Problems with Repeated Eigenvalues
,”
Int. J. Numer. Methods Eng.
0029-5981,
19
(
1
), pp.
93
112
.
2.
Haug
,
J.
,
Choi
,
K. K.
, and
Komkov
,
V.
, 1986, “
Design Sensitivity Analysis of Structural System
,”
Academic
, New York.
3.
Adelamn
,
H. M.
, and
Haftka
,
R. T.
, 1986, “
Sensitivity Analysis of Discrete Structural Systems
,”
AIAA J.
0001-1452,
24
(
5
), pp.
823
832
.
4.
Noor
,
A. K.
, and
Atluri
,
S. N.
, 1987, “
Advances and Trends in Computational Structural Mechanics
,”
AIAA J.
0001-1452,
25
(
7
), pp.
977
995
.
5.
Haftka
,
R. T.
,
Gürdal
,
Z.
, and
Kamat
,
M. P.
, 1990, “
Elements of Structural Optimization
,”
Kluwer Academic Publisher
.
6.
Stetson
,
K. A.
, 1975, “
Perturbation Method of Structural Design Relevant to Holographic Vibration Analysis
,”
AIAA J.
0001-1452,
13
(
4
), pp.
457
459
.
7.
Stetson
,
K. A.
, and
Palma
,
G. E.
, 1976, “
Inversion of First-Order Perturbation Theory and Its Application to Structural Design
,”
AIAA J.
0001-1452,
14
(
4
), pp.
454
460
.
8.
Sandstrom
,
R. E.
, and
Anderson
,
W. J.
, 1982, “
Modal Perturbation Methods for Marine Structures
,”
Transactions, SNAME
,
90
, pp.
41
54
.
9.
Hoff
,
C. J.
, and
Bernitsas
,
M. M.
, 1985, “
Dynamic Redesign of Marine Structures
,”
J. Ship Res.
0022-4502,
29
(
4
), pp.
285
295
.
10.
Kim
,
J. H.
, and
Bernitsas
,
M. M.
, 1988, “
Redesign of Marine Structures
,”
Journal of Marine Structures
,
1
(
2
), pp.
139
183
.
11.
Bernitsas
,
M. M.
, and
Tawekal
,
R. L.
, 1991, “
Structural Model Correlation Using Large Admissible Perturbation in Cognate Space
,”
AIAA J.
0001-1452,
29
(
12
), pp.
2222
2232
.
12.
Tawekal
,
R. L.
, and
Bernitsas
,
M. M.
, 1991, “
Finite Element Model Correlation for Ofshore Structures
,”
Proceedings 10th International OMAE Conference
, Norway, June
1
, pp.
317
326
.
13.
Bernitsas
,
M. M.
, and
Kang
,
B.
, 1991, “
Admissible Large Perturbation in Structural Redesign
,”
AIAA J.
0001-1452,
29
(
1
), pp.
104
113
.
14.
Bernitsas
,
M. M.
, and
Suryatama
,
D.
, 1998, “
Structural Redesign by Large Admissible Perturbation with Static Mode Compensation
,”
J. Offshore Mech. Arct. Eng.
0892-7219, ASME Transactions, Vol.
120
, No. 4, November 1998, pp.
201
211
.
15.
Bernitsas
,
M. M.
, and
Blouin
,
V. Y.
, 1999, “
Structural Redesign for Forced Response with Proportional Damping by Large Admissible Perturbation
,”
AIAA J.
0001-1452,
37
(
11
), Nov., pp.
1506
1513
.
16.
Bernitsas
,
M. M.
, and
Rim
,
C. W.
, 1994, “
Redesign of Plates by Large Admissible Perturbations
,”
Journal of American Institute of Aeronautics and Astronautics
,
32
(
5
), May, pp.
1021
1028
.
17.
Suryatama
,
D.
, and
Bernitsas
,
M. M.
, 2000, “
Topology Redesign of Complex Structures by Large Admissible Perturbations
,”
Struct. Optim.
0934-4373,
20
(
2
), October, pp.
138
153
.
18.
Cook
,
R. D.
,
Malkus
,
D. S.
, and
Plesha
,
M. E.
, 2000, “
Concepts And Applications Of Finite Element Analysis
,”
Wiley
, New York.
You do not currently have access to this content.