State-of-the-art neutron detectors lack capabilities required by the fields of homeland security, health physics, and even for direct in-core nuclear power monitoring. A new system being developed at Purdue’s Metastable Fluid and Advanced Research Laboratory in conjunction with S/A Labs, LLC provides capabilities that the state-of-the-art lacks, and simultaneously with beta (β) and gamma (γ) blindness, high (>90% intrinsic) efficiency for neutron/alpha spectroscopy and directionality, simple detection mechanism, and lowered electronic component dependence. This system, the tensioned metastable fluid detector (TMFD), provides these capabilities despite its vastly reduced cost and complexity compared with equivalent present day systems. Fluids may be placed at pressures lower than perfect vacuum (i.e., negative), resulting in tensioned metastable states. These states may be induced by tensioning fluids just as one would tension solids. The TMFD works by cavitation nucleation of bubbles resulting from energy deposited by charged ions or laser photon pile-up heating of fluid molecules, which are placed under sufficiently tensioned (negative) pressure states of metastability. The charged ions may be created from neutron scattering or from energetic charged particles such as alphas, alpha recoils, and fission fragments. A methodology has been created to profile the pressures in these chambers by laser-induced cavitation (LIC) for verification of a multiphysics simulation of the chambers. The methodology and simulation together have led to large efficiency gains in the current acoustically tensioned metastable fluid detector (ATMFD) system. This paper describes in detail the LIC methodology and provides background on the simulation it validates.

References

1.
National Academy of Engineering
,
2012
, “
Grand ChallengesEngineering Challenges
.”
2.
Lapinskas
,
J. R.
,
Zielinski
,
S. M.
,
Webster
,
J. A.
,
Taleyarkhan
,
R. P.
, and
Mcdeavitt
,
S. M.
,
2009
, “
Tension Metastable Fluid Detection Systems for Special Nuclear Material Detection and Monitoring
,”
Proceedings of the 17th International Conference on Nuclear Engineering
,
ASME
,
Brussels, Belgium
, pp. 
1
7
.
3.
Briesmeister
,
J. F.
,
1993
, “
MCNP: A General Monte Carlo N-Particle Transport Code
,”
Los Alamos National Laboratory
,
Los Alamos, NM
, Technical Report.
4.
Sansone
,
A.
,
Zielinski
,
S.
,
Webster
,
J.
,
Lapinskas
,
J.
,
Talearykhan
,
R.
, and
Block
,
R.
,
2011
, “
Gamma-Blind Nuclear Particle-Induced Bubble Formation in Tensioned Metastable Fluids
,”
Transactions of the American Nuclear Society
,
La Grange Park, IL
, p. 
1033
.
5.
Taleyarkhan
,
R. P.
,
Lapinskas
,
J.
, and
Xu
,
Y.
,
2008
, “
Tensioned Metastable Fluids and Nanoscale Interactions with External StimuliTheoretical-Cum-Experimental Assessments and Nuclear Engineering Applications
,”
Nucl. Eng. Des.
,
238
(
7
), pp. 
1820
1827
.10.1016/j.nucengdes.2007.10.019
6.
Glaser
,
D.
,
1952
, “
Some Effects of Ionizing Radiation on the Formation of Bubbles in Liquids
,”
Phys. Rev.
,
87
(
4
), pp. 
665
665
.10.1103/PhysRev.87.665
7.
Glaser
,
D.
,
1953
, “
A Possible “Bubble Chamber” for the Study of Ionizing Events
,”
Phys. Rev.
,
91
(
2
), p. 
496
.
8.
Scholander
,
P. F.
,
Bradstreet
,
E. D.
,
Hemmingsen
,
E. A.
,
Hammel
,
H. T.
,
1965
, “
Sap Pressure in Vascular Plants: Negative Hydrostatic Pressure can be Measured in Plants
,”
Science
,
148
(
3668
), pp. 
339
346
.10.1126/science.148.3668.339
9.
Briggs
,
L. J.
,
1950
, “
Limiting Negative Pressure of Water
,”
J. Appl. Phys.
,
21
(
7
), p. 
721
.10.1063/1.1699741
10.
Fisher
,
J. C.
,
1948
, “
The Fracture of Liquids
,”
J. Appl. Phys.
,
19
(
11
), p. 
1062
.10.1063/1.1698012
11.
Archambault
,
B. C.
,
Webster
,
J. A.
,
Lapinskas
,
J. R.
,
Grimes
,
T. F.
, and
Taleyarkhan
,
R. P.
,
2012
, “
Development of a Novel Direction-Position Sensing Fast Neutron Detector Using Tensioned Metastable Fluids
,”
Nucl. Instrum. Methods Phys. Res. Sect. A
,
673
, pp. 
89
97
.10.1016/j.nima.2011.12.050
12.
COMSOL
,
2012
, “
Comsol Multiphysics: Installation and Operations Guide
,”
COMSOL Inc.
, Burlington, MA, Technical report.
13.
Wang
,
J.
,
Archambault
,
B.
,
Xu
,
Y.
, and
Taleyarkhan
,
R. P.
,
2010
, “
Numerical Simulation and Experimental Study on Resonant Acoustic Chambers For Novel, High Efficiency Nuclear Particle Detectors
,”
Nucl. Eng. Des.
,
240
(
11
), pp. 
3716
3726
.10.1016/j.nucengdes.2010.07.037
14.
Wolfenden
,
A.
,
Gill
,
J. E.
,
Thomas
,
V.
,
Giacomin
,
A. J.
,
Cook
,
L. S.
,
Chawla
,
K. K.
,
Venkatesh
,
R.
, and
Vaidya
,
R. U
,
1994
, “
The Relation of Dynamic Elastic Moduli, Mechanical Damping and Mass Density to the Microstructure of Some Glass-Matrix Composites
,”
J. Mater. Sci.
,
29
(
6
), pp. 
1670
1675
.10.1007/BF00368944
15.
Cancelos
,
S.
,
Moraga
,
F. J.
,
Lahey
,
R. T.
, Jr.
, and
Bouchilloux
,
P.
,
2004
, “
The Design of Acoustic Chambers for Bubble Dynamics Research
,”
The Japan-US Seminar on Two-Phase Flow Dynamics
,
Ngahama, Shiga, Japan
, pp. 
197
240
.
16.
Cramer
,
M. S.
,
2012
, “
Numerical Estimates for the Bulk Viscosity of Ideal Gases
,”
Phy. Fluids
,
24
(
6
), p. 
066102
.10.1063/1.4729611
17.
Dukhin
,
A. S.
, and
Goetz
,
P. J.
,
2009
, “
Bulk Viscosity and Compressibility Measurement Using Acoustic Spectroscopy
,”
J. Chem. Phys.
,
130
(
124519
), pp. 
1
13
.10.1063/1.3095471
18.
Gomes de Azevedo
,
R.
,
Szydlowski
,
J.
,
Pires
,
P. F.
,
Esperança
,
J. M. S. S.
,
Guedes
,
H. J. R.
, and
Rebelo
,
L. P. N.
,
2004
, “
A Novel Non-Intrusive Microcell for Sound-Speed Measurements in Liquids. Speed of Sound and Thermodynamic Properties of 2-Propanone at Pressures up to 160 MPa
,”
J. Chem. Thermodyn.
,
36
(
3
), pp.
211
222
.10.1016/j.jct.2003.12.001
19.
Liu
,
Y.
,
1998
, “
Acoustic Properties of Reservoir Fluids
,” Dissertation,
Stanford University
.
20.
Walling
,
M.
, and
Hagen
,
A.
,
2012
, “
Dimensional Tolerances: 600 mL Tall Form and 400 mL “Griffin” Beaker
.”
You do not currently have access to this content.