Abstract

The small punch test (SPT) approach is a miniature specimen testing technique to estimate the preserved mechanical strength of an in-service component to check its fitness for service. The SPT results are summarized in form of force-specimen deflection, (F − u) and force-punch displacement, (F − v) response. There are many standards published in an attempt to define a universally accepted approach for SPT-aided mechanical characterization. However, it was recognized that such standards were not concerned to practice a consistent approach while SPT response measurement and strength estimation toward outlining proclaimed best-fitting correlations. This paper narrates limitations caused by known inconsistent practices and proposed comprehensive correlations for accurate strength estimation for metallic materials which are exposed to 100–2000 MPa strengths.

References

1.
Manahan
,
M. P.
,
Argon
,
A. S.
, and
Harling
,
O. K.
,
1981
, “
The Development of a Miniaturized Disk Bend Test for the Determination of Postirradiation Mechanical Properties
,”
J. Nucl. Mater.
,
104
, pp.
1545
1550
.
2.
Lucas
,
G. E.
,
Okada
,
A.
, and
Kiritani
,
M.
,
1986
, “
Parametric Analysis of the Disc Bend Test
,”
J. Nucl. Mater.
,
141–143
, pp.
532
535
.
3.
Mao
,
X.
, and
Takahashi
,
H.
,
1987
, “
Development of a Further-Miniaturized Specimen of 3 mm Diameter for TEM Disk (ø3 mm) Small Punch Tests
,”
J. Nucl. Mater.
,
150
(
1
), pp.
42
52
.
4.
Simonovski
,
I.
,
Baraldi
,
D.
,
Holmström
,
S.
,
Altstadt
,
E.
,
Delville
,
R.
, and
Bruchhausen
,
M.
,
2018
, “
Determining the Ultimate Tensile Strength of Fuel Cladding Tubes by Small Punch Testing
,”
J. Nucl. Mater.
,
509
, pp.
620
630
.
5.
Rodríguez
,
C.
,
Cuesta
,
I. I.
,
Maspoch
,
M. L. L.
, and
Belzunce
,
F. J.
,
2016
, “
Application of the Miniature Small Punch Test for the Mechanical Characterization of Polymer Materials
,”
Theor. Appl. Fract. Mec.
,
86
, pp.
78
83
.
6.
Sánchez-Ávila
,
D.
,
Barea
,
R.
,
Martínez
,
E.
,
Blasco
,
J. R.
,
Portolés
,
L.
, and
Carreño
,
F.
,
2018
, “
Determination of the Instantaneous Strain Rate During Small Punch Testing of 316 L Stainless Steel
,”
Int. J. Mech. Sci.
,
149
, pp.
93
100
.
7.
CEN/WS21
,
2006
, “
Small Punch Test Method for Metallic Materials. Part B: A Code of Practice for Small Punch Testing for Tensile and Fracture Behavior
”.
8.
ISO
,
2008
,
Metallic Materials—Measurement of Mechanical Properties by an Instrumented Indentation Test—Indentation Tensile Properties
, ISO/TR 29381:2008.
9.
British Standards Institution
,
2021
,
Metallic Materials—Small Punch Test Method
.
10.
Patel
,
P.
, and
Patel
,
B. K.
,
2022
, “
The Small Punch Test a Viable Alternate for In-Service Components Preserved Strength Estimation
,”
J. Inst. Eng.: Ser. C
,
103
(
1
), pp.
121
133
.
11.
ASTM International
,
2020
,
Standard Test Method for Small Punch Testing of Metallic Materials, E3205-20
.
12.
ANSYS Inc.
,
2020 R2
,
ANSYS Mechanical
,
ANSYS Inc.
13.
Gurson
,
A. L.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media
,”
ASME J. Eng. Mater. Technol.
,
99
(
1
), pp.
2
15
.
14.
Gurson
,
A. L.
,
1976
,
Porous Rigid Plastic Materials Containing Rigid Inclusions; Yield Function, Plastic Potential and Void Nucleation
,
Brown University
,
Providence, RI
.
15.
Tvergaard
,
V.
,
1981
, “
Influence of Voids on Shear Band Instabilities Under Plane Strain Conditions
,”
Int. J. Fract.
,
17
(
4
), pp.
389
407
.
16.
ASTM International
,
2010
,
ASTM E8/E8M Standard Test Methods for Tension Testing of Metallic Materials
, pp.
1
27
.
17.
García
,
T. E.
,
Rodríguez
,
C.
,
Belzunce
,
F. J.
, and
Suárez
,
C.
,
2014
, “
Estimation of the Mechanical Properties of Metallic Materials by Means of the Small Punch Test
,”
J. Alloys Compd.
,
582
, pp.
708
717
.
18.
Hurst
,
R.
, and
Matocha
,
K.
,
2014
, “
Experiences With the European Code of Practice for Small Punch Testing for Creep, Tensile and Fracture Behaviour
,”
Proceedings of the 3rd International Conference SSTT 2014 Determination of Mechanical Properties of Materials by Small Punch and other Miniature Testing Techniques
,
Castle Seggau near Graz, Austria
,
Sept. 23–25
, pp.
1
26
.
19.
Bruchhausen
,
M.
,
Holmström
,
S.
,
Simonovski
,
I.
,
Austin
,
T.
,
Lapetite
,
J. M.
,
Ripplinger
,
S.
, and
de Haan
,
F.
,
2016
, “
Recent Developments in Small Punch Testing: Tensile Properties and DBTT
,”
Theor. Appl. Fract. Mec.
,
86
, pp.
2
10
.
20.
Altstadt
,
E.
,
Houska
,
M.
,
Simonovski
,
I.
,
Bruchhausen
,
M.
,
Holmström
,
S.
, and
Lacalle
,
R.
,
2018
, “
On the Estimation of Ultimate Tensile Stress From Small Punch Testing
,”
Int. J. Mech. Sci.
,
36
, pp.
85
93
.
21.
Campitelli
,
E. N.
,
Spätig
,
P.
,
Bonadé
,
R.
,
Hoffelner
,
W.
, and
Victoria
,
M.
,
2004
, “
Assessment of the Constitutive Properties From Small Ball Punch Test: Experiment and Modeling
,”
J. Nucl. Mater.
,
335
(
3
), pp.
366
378
.
22.
Simonovski
,
I.
,
Holmström
,
S.
, and
Bruchhausen
,
M.
,
2017
, “
Small Punch Tensile Testing of Curved Specimens: Finite Element Analysis and Experiment
,”
Int. J. Mech. Sci.
,
120
, pp.
204
213
.
23.
Altstadt
,
E.
,
Ge
,
H. E.
,
Kuksenko
,
V.
,
Serrano
,
M.
,
Houska
,
M.
,
Lasan
,
M.
,
Bruchhausen
,
M.
,
Lapetite
,
J. M.
, and
Dai
,
Y.
,
2016
, “
Critical Evaluation of the Small Punch Test as a Screening Procedure for Mechanical Properties
,”
J. Nucl. Mater.
,
472
, pp.
186
195
.
You do not currently have access to this content.