Abstract

Guided wave mixing leverages mutual wave interactions to provide sensitive diagnostics of material degradation in plates and pipes and an early warning upon which maintenance decisions can be based. In some cases, the material to be interrogated may be otherwise inaccessible for nondestructive evaluation. The distortion of the waveform in nonlinear ultrasonics is typically quite small, often making it difficult to distinguish from nonlinearities in the sensing system. Mutual wave interactions are preferred to wave self-interactions in this respect because they can be designed to occur away from frequencies corrupted by sensing system nonlinearity. Furthermore, primary waves that generate secondary waves having a different polarity also provide a means to separate the material nonlinearity from the sensing system nonlinearity. Finite element simulations of wave mixing using a hyperelastic material model are conducted as a precursor to laboratory experiments to establish realistic expectations. In one case, shear-horizontal waves are mixed with co-directional symmetric Lamb waves to generate backpropagating shear-horizontal waves at the difference frequency. In the second case, counterpropagating shear-horizontal waves mix to generate secondary standing waves at the cutoff frequency of the S1 Lamb wave mode. In both cases, the results indicate that the larger the wave mixing zone, the more measurable is the amplitude of the secondary waves. These results will be used to design experiments that demonstrate the utility of these novel wave interactions.

References

1.
McDowell
,
D. L.
,
1996
, “
Basic Issues in the Mechanics of High Cycle Metal Fatigue
,”
Int. J. Fract.
,
80
(
2–3
), pp.
103
145
.
2.
Hertzberg
,
R. W.
,
Vinci
,
R. P.
, and
Hertzberg
,
J. L.
,
2020
,
Deformation and Fracture Mechanics of Engineering Materials
, 6th ed.,
Wiley
,
Hoboken, NJ
.
3.
Maciusowicz
,
M.
, and
Psuj
,
G.
,
2019
, “
Use of Time-Dependent Multispectral Representation of Magnetic Barkhausen Noise Signals for the Needs of Non-Destructive Evaluation of Steel Materials
,”
Sensors
,
19
(
6
), p.
1443
.
4.
Hou
,
Y.
,
Li
,
X.
,
Zheng
,
Y.
,
Zhou
,
J.
,
Tan
,
J.
, and
Chen
,
X.
,
2020
, “
A Method for Detecting the Randomness of Barkhausen Noise in a Material Fatigue Test Using Sensitivity and Uncertainty Analysis
,”
Sensors
,
20
(
18
), p.
5383
.
5.
Kundu
,
T.
,
2019
,
Nonlinear Ultrasonic and Vibro-Acoustical Techniques for Nondestructive Evaluation
,
Springer Nature
,
Switzerland
.
6.
Jhang
,
K.-Y.
,
Lissenden
,
C.
,
Solodov
,
I.
,
Ohara
,
Y.
, and
Gusev
,
V.
, eds.
2020
,
Measurement of Nonlinear Ultrasonic Characteristics
,
Springer
,
Singapore
.
7.
Li
,
Z.
,
Shenoy
,
B. B.
,
Udpa
,
L.
,
Udpa
,
S.
, and
Deng
,
Y.
,
2021
, “
Magnetic Barkhausen Noise Technique for Early-Stage Fatigue Prediction in Martensitic Stainless-Steel Samples
,”
ASME J. Nondestr. Eval. Diagn. Prognost. Eng. Syst.
,
4
(
4
), p.
041004
.
8.
Hamilton
,
M. F.
, and
Blackstock
,
D. T.
,
1997
,
Nonlinear Acoustics
, 1st ed.,
Academic Press
,
San Diego, CA
.
9.
Hikata
,
A.
,
Chick
,
B. B.
, and
Elbaum
,
C.
,
1963
, “
Effect of Dislocations on Finite Amplitude Ultrasonic Waves in Aluminum
,”
Appl. Phys. Lett.
,
3
(
11
), pp.
195
197
.
10.
Cantrell
,
J. H.
,
2004
, “
Substructural Organization, Dislocation Plasticity and Harmonic Generation in Cyclically Stressed Wavy Slip Metals
,”
Proc. R. Soc. London Ser. A
,
460
(
2043
), pp.
757
780
.
11.
Gao
,
X.
, and
Qu
,
J.
,
2019
, “
Contribution of Dislocation Pileups to Acoustic Nonlinearity Parameter
,”
J. Appl. Phys.
,
125
(
21
), p.
215104
.
12.
Cantrell
,
J. H.
,
2004
,
Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization
,
T.
Kundu
, ed.,
CRC Press
,
Boca Raton, FL
, pp.
363
433
.
13.
Xiang
,
Y.
,
Deng
,
M.
,
Xuan
,
F.-Z.
, and
Liu
,
C.-J.
,
2012
, “
Effect of Precipitate-Dislocation Interactions on Generation of Nonlinear Lamb Waves in Creep-Damaged Metallic Alloys
,”
J. Appl. Phys.
,
111
(
10
), p.
104905
.
14.
Jhang
,
K.-Y.
,
2009
, “
Nonlinear Ultrasonic Techniques for Nondestructive Assessment of Micro Damage in Material: A Review
,”
Int. J. Precis. Eng. Manuf.
,
10
(
1
), pp.
123
135
.
15.
Matlack
,
K. H.
,
Kim
,
J.-Y.
,
Jacobs
,
L. J.
, and
Qu
,
J.
,
2015
, “
Review of Second Harmonic Generation Measurement Techniques for Material State Determination in Metals
,”
J. Nondestr. Eval.
,
34
(
1
), p.
273
.
16.
Chillara
,
V. K.
, and
Lissenden
,
C. J.
,
2016
, “
Review of Nonlinear Ultrasonic Guided Wave Nondestructive Evaluation: Theory, Numerics, and Experiments
,”
Opt. Eng.
,
55
, p.
16
.
17.
Lissenden
,
C. J.
,
2021
, “
Nonlinear Ultrasonic Guided Waves—Principles for Nondestructive Evaluation
,”
J. Appl. Phys.
,
129
(
2
), p.
021101
.
18.
Pau
,
A.
, and
Lanza di Scalea
,
F.
,
2015
, “
Nonlinear Guided Wave Propagation in Prestressed Plates
,”
J. Acoust. Soc. Am.
,
137
(
3
), pp.
1529
1540
.
19.
Cantrell
,
J. H.
, and
Yost
,
W. T.
,
2001
, “
Nonlinear Ultrasonic Characterization of Fatigue Microstructures
,”
Int. J. Fatigue
,
23
, pp.
487
490
.
20.
Jones
,
G. L.
, and
Kobett
,
D. R.
,
1963
, “
Interaction of Elastic Waves in an Isotropic Solid
,”
J. Acoust. Soc. Am.
,
35
(
1
), pp.
5
10
.
21.
Rollins
,
F. R.
,
1963
, “
Interaction of Ultrasonic Waves in Solid Media
,”
Appl. Phys. Lett.
,
2
(
8
), pp.
147
148
.
22.
Korneev
,
V. A.
, and
Demčenko
,
A.
,
2014
, “
Possible Second-Order Nonlinear Interactions of Plane Waves in an Elastic Solid
,”
J. Acoust. Soc. Am.
,
135
(
2
), pp.
591
598
.
23.
Ju
,
T.
,
Achenbach
,
J. D.
,
Jacobs
,
L. J.
, and
Qu
,
J.
,
2019
, “
Nondestructive Evaluation of Thermal Aging of Adhesive Joints by Using a Nonlinear Wave Mixing Technique
,”
NDT&E Int.
,
103
, pp.
62
67
.
24.
Hasanian
,
M.
, and
Lissenden
,
C. J.
,
2017
, “
Second Order Harmonic Guided Wave Mutual Interactions in Plate: Vector Analysis, Numerical Simulation, and Experimental Results
,”
J. Appl. Phys.
,
122
(
8
), p.
084901
.
25.
Hasanian
,
M.
, and
Lissenden
,
C. J.
,
2018
, “
Second Order Ultrasonic Guided Wave Mutual Interactions in Plate: Arbitrary Angles, Internal Resonance, and Finite Interaction Region
,”
J. Appl. Phys.
,
124
(
16
), p.
164904
.
26.
Cho
,
H.
,
Hasanian
,
M.
,
Shan
,
S.
, and
Lissenden
,
C. J.
,
2019
, “
Nonlinear Guided Wave Technique for Localized Damage Detection in Plates With Surface-Bonded Sensors to Receive Lamb Waves Generated by Shear-Horizontal Wave Mixing
,”
NDT&E Int.
,
102
, pp.
35
46
.
27.
Shan
,
S.
,
Hasanian
,
M.
,
Cho
,
H.
,
Lissenden
,
C. J.
, and
Cheng
,
L.
,
2019
, “
New Nonlinear Ultrasonic Method for Material Characterization: Codirectional Shear Horizontal Guided Wave Mixing in Plate
,”
Ultrasonics
,
96
, pp.
64
74
.
28.
Yeung
,
C.
, and
Ng
,
C. T.
,
2020
, “
Nonlinear Guided Wave Mixing in Pipes for Detection of Material Nonlinearity
,”
J. Sound Vib.
,
485
, p.
115541
.
29.
Ishii
,
Y.
,
Biwa
,
S.
, and
Adachi
,
T.
,
2018
, “
Non-Collinear Interaction of Guided Elastic Waves in an Isotropic Plate
,”
J. Sound Vib.
,
419
, pp.
390
404
.
30.
Ishii
,
Y.
,
Hiraoka
,
K.
, and
Adachi
,
T.
,
2018
, “
Finite-Element Analysis of Non-Collinear Mixing of Two Lowest-Order Antisymmetric Rayleigh–Lamb Waves
,”
J. Acoust. Soc. Am.
,
144
(
1
), pp.
53
68
.
31.
Metya
,
A. K.
,
Tarafder
,
S.
, and
Balasubramaniam
,
K.
,
2018
, “
Nonlinear Lamb Wave Mixing for Assessing Localized Deformation During Creep
,”
NDT&E Int.
,
98
, pp.
89
94
.
32.
Sun
,
M.
, and
Qu
,
J.
,
2020
, “
Analytical and Numerical Investigations of One-Way Mixing of Lamb Waves in a Thin Plate
,”
Ultrasonics
,
108
, p.
106180
.
33.
Ding
,
X.
,
Zhao
,
Y.
,
Deng
,
M.
,
Shui
,
G.
, and
Hu
,
N.
,
2020
, “
One-Way Lamb Mixing Method in Thin Plates With Randomly Distributed Micro-Cracks
,”
Int. J. Mech. Sci.
,
171
, p.
105371
.
34.
Li
,
W.
,
Xu
,
Y.
,
Hu
,
N.
, and
Deng
,
M.
,
2020
, “
Impact Damage Detection in Composites Using a Guided Wave Mixing Technique
,”
Meas. Sci. Technol.
,
31
(
1
), p.
014001
.
35.
Blanloeuil
,
P.
,
Rose
,
L. R. F.
,
Veidt
,
M.
, and
Wang
,
C. H.
,
2021
, “
Nonlinear Mixing of Non-Collinear Guided Waves at a Contact Interface
,”
Ultrasonics
,
110
, p.
106222
.
36.
Li
,
W.
,
Lan
,
Z.
,
Hu
,
N.
, and
Deng
,
M.
,
2021
, “
Modeling and Simulation of Backward Combined Harmonic Generation Induced by One-Way Mixing of Longitudinal Ultrasonic Guided Waves in a Circular Pipe
,”
Ultrasonics
,
113
, p.
106356
.
37.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
,
1959
,
Theory of Elasticity
,
Pergamon Press
,
New York
.
38.
Deng
,
M.
,
1998
, “
Cumulative Second-Harmonic Generation Accompanying Nonlinear Shear Horizontal Mode Propagation in a Solid Plate
,”
J. Appl. Phys.
,
84
(
7
), p.
6
.
39.
Deng
,
M.
,
2003
, “
Analysis of Second-Harmonic Generation of Lamb Modes Using a Modal Analysis Approach
,”
J. Appl. Phys.
,
94
(
6
), pp.
4152
4159
.
40.
Bermes
,
C.
,
Kim
,
J.-Y.
,
Qu
,
J.
, and
Jacobs
,
L. J.
,
2007
, “
Experimental Characterization of Material Nonlinearity Using Lamb Waves
,”
Appl. Phys. Lett.
,
90
(
2
), p.
021901
.
41.
Pruell
,
C.
,
Kim
,
J.-Y.
,
Qu
,
J.
, and
Jacobs
,
L. J.
,
2007
, “
Evaluation of Plasticity Driven Material Damage Using Lamb Waves
,”
Appl. Phys. Lett.
,
91
(
23
), p.
231911
.
42.
de Lima
,
W. J. N.
, and
Hamilton
,
M. F.
,
2003
, “
Finite-Amplitude Waves in Isotropic Elastic Plates
,”
J. Sound Vib.
,
265
(
4
), pp.
819
839
.
43.
Chillara
,
V. K.
, and
Lissenden
,
C. J.
,
2012
, “
Interaction of Guided Wave Modes in Isotropic Weakly Nonlinear Elastic Plates: Higher Harmonic Generation
,”
J. Appl. Phys.
,
111
(
12
), p.
124909
.
44.
Rose
,
J. L.
,
2014
,
Ultrasonic Guided Waves in Solid Media
,
Cambridge University Press
.
45.
Müller
,
M. F.
,
Kim
,
J.-Y.
,
Qu
,
J.
, and
Jacobs
,
L. J.
,
2010
, “
Characteristics of Second Harmonic Generation of Lamb Waves in Nonlinear Elastic Plates
,”
J. Acoust. Soc. Am.
,
127
(
4
), pp.
2141
2152
.
46.
Liu
,
Y.
,
Chillara
,
V. K.
, and
Lissenden
,
C. J.
,
2013
, “
On Selection of Primary Modes for Generation of Strong Internally Resonant Second Harmonics in Plate
,”
J. Sound Vib.
,
332
(
19
), pp.
4517
4528
.
47.
Liu
,
Y.
,
Khajeh
,
E.
,
Lissenden
,
C. J.
, and
Rose
,
J. L.
,
2013
, “
Interaction of Torsional and Longitudinal Guided Waves in Weakly Nonlinear Circular Cylinders
,”
J. Acoust. Soc. Am.
,
133
(
5
), pp.
2541
2553
.
48.
Liu
,
Y.
,
Chillara
,
V. K.
,
Lissenden
,
C. J.
, and
Rose
,
J. L.
,
2013
, “
Third Harmonic Shear Horizontal and Rayleigh Lamb Waves in Weakly Nonlinear Plates
,”
J. Appl. Phys.
,
114
(
11
), p.
114908
.
49.
Zhao
,
J.
,
Chillara
,
V. K.
,
Ren
,
B.
,
Cho
,
H.
,
Qiu
,
J.
, and
Lissenden
,
C. J.
,
2016
, “
Second Harmonic Generation in Composites: Theoretical and Numerical Analyses
,”
J. Appl. Phys.
,
119
(
6
), p.
064902
.
50.
Matsuda
,
N.
, and
Biwa
,
S.
,
2011
, “
Phase and Group Velocity Matching for Cumulative Harmonic Generation in Lamb Waves
,”
J. Appl. Phys.
,
109
(
9
), p.
094903
.
51.
Hakoda
,
C.
, and
Lissenden
,
C. J.
,
2019
, “
Comparison of Quasi-Rayleigh Waves and Rayleigh Waves, and Clarifying the Cut-Off Frequency of Quasi-Rayleigh Waves
,”
Ultrasonics
,
92
, pp.
50
56
.
52.
Hakoda
,
C.
,
Pantea
,
C.
, and
Chillara
,
V. K.
,
2021
, “
Engineering the Beat Phenomenon of Quasi-Rayleigh Waves for Regions With Minimal Surface Acoustic Wave (SAW) Amplitude
,”
J. Sound Vib.
,
515
, p.
116444
.
53.
Masserey
,
B.
, and
Fromme
,
P.
,
2008
, “
On the Reflection of Coupled Rayleigh-Like Waves at Surface Defects in Plates
,”
J. Acoust. Soc. Am.
,
123
(
1
), pp.
88
98
.
54.
Liu
,
Y.
,
Lissenden
,
C. J.
, and
Rose
,
J. L.
,
2013
,
Health Monitoring of Structural and Biological Systems 2013
,
T.
Kundu
, ed., Vol.
8695
,
SPIE Digital Library
, pp.
207
218
.
You do not currently have access to this content.