Abstract

Rolling element bearings are one of the most common mechanical components used in a wide variety of rotating systems. The performance of these systems is closely associated with the health of bearings. In this study, a nonlinear time series analysis method, i.e., recurrence analysis is utilized to assess the health of bearings using time domain data. The recurrence analysis acquires the quantitative measures from the recurrence plots and provides an insight to the system under investigations. Experiments are performed to generate the vibration data from the healthy and faulty bearing. Eight recurrence quantitative analysis measures and five time-domain measures are used for the investigations. Three artificial intelligence techniques: rotation forest, artificial neural network, and support vector machine are employed to quantify the diagnosis performance. Results highlight the ability of recurrence analysis to identify the health state of the bearing at the early stage and superior diagnosis accuracy of the proposed methodology.

References

1.
Georgoulas
,
G.
,
Loutas
,
T.
,
Stylios
,
C. D.
, and
Kostopoulos
,
V.
,
2013
, “
Bearing Fault Detection Based on Hybrid Ensemble Detector and Empirical Mode Decomposition
,”
Mech. Syst. Signal Process.
,
41
(
1–2
), pp.
510
525
.
2.
Sharma
,
A.
,
Bhardwaj
,
S.
, and
Kankar
,
P. K.
,
2018
, “
Fault Diagnosis of Rolling Element Bearings Using Fractional Linear Prediction and AI Techniques
,”
Life Cycle Reliab. Saf. Eng.
,
8
(
1
), pp.
11
19
.
3.
Malhi
,
A.
, and
Gao
,
R. X.
,
2004
, “
PCA-Based Feature Selection Scheme for Machine Defect Classification
,”
IEEE Trans. Instrum. Meas.
,
53
(
6
), pp.
1517
1525
.
4.
Rojas
,
A.
, and
Nandi
,
A. K.
,
2006
, “
Practical Scheme for Fast Detection and Classification of Rolling-Element Bearing Faults Using Support Vector Machines
,”
Mech. Syst. Signal Process.
,
20
(
7
), pp.
1523
1536
.
5.
Yang
,
J.
,
Zhang
,
Y.
, and
Zhu
,
Y.
,
2007
, “
Intelligent Fault Diagnosis of Rolling Element Bearing Based on SVMS and Fractal Dimension
,”
Mech. Syst. Signal Process.
,
21
(
5
), pp.
2012
2024
.
6.
Saravanan
,
N.
,
Kumar Siddabattuni
,
V. N. S.
, and
Ramachandran
,
K. I.
,
2008
, “
A Comparative Study on Classification of Features by SVM And PSVM Extracted Using Morlet Wavelet for Fault Diagnosis of Spur Bevel Gear Box
,”
Expert Syst. Appl.
,
35
(
3
), pp.
1351
1366
.
7.
Zhang
,
L.
,
Xiong
,
G.
,
Liu
,
H.
,
Zou
,
H.
, and
Guo
,
W.
,
2010
, “
Bearing Fault Diagnosis Using Multi-Scale Entropy and Adaptive Neuro-Fuzzy Inference
,”
Expert Syst. Appl.
,
37
(
8
), pp.
6077
6085
.
8.
Kankar
,
P. K.
,
Sharma
,
S. C.
, and
Harsha
,
S. P.
,
2011
, “
Fault Diagnosis of Ball Bearings Using Machine Learning Methods
,”
Expert Syst. Appl.
,
38
(
3
), pp.
1876
1886
.
9.
Wu
,
S.-D.
,
Wu
,
P.-H.
,
Wu
,
C.-W.
,
Ding
,
J.-J.
, and
Wang
,
C.-C.
,
2012
, “
Bearing Fault Diagnosis Based on Multiscale Permutation Entropy and Support Vector Machine
,”
Entropy
,
14
(
8
), pp.
1343
1356
.
10.
Gangsar
,
P.
, and
Tiwari
,
R.
,
2014
, “
Multiclass Fault Taxonomy in Rolling Bearings at Interpolated and Extrapolated Speeds Based on Time Domain Vibration Data by SVM Algorithms
,”
J. Failure Anal. Prev.
,
14
(
6
), pp.
826
837
.
11.
Sharma
,
A.
,
Amarnath
,
M.
, and
Kankar
,
P. K.
,
2016
, “
Feature Extraction and Fault Severity Classification in Ball Bearings
,”
J. Vib. Control
,
22
(
1
), pp.
176
192
.
12.
Sharma
,
A.
,
Amarnath
,
M.
, and
Kankar
,
P. K.
,
2018
, “
Use of Feature Ranking Techniques for Defect Severity Estimation of Rolling Element Bearings
,”
Int. J. Acoust. Vib.
,
23
(
1
), pp.
49
56
.
13.
Salunkhe
,
V. G.
,
Desavale
,
R. G.
, and
Jagadeesha
,
T.
,
2020
, “
Experimental Frequency-Domain Vibration Based Fault Diagnosis of Roller Element Bearings Using Support Vector Machine
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part B. Mech. Eng.
,
7
(
2
), p.
021001
.
14.
Wu
,
Z.
,
Jiang
,
H.
,
Zhao
,
K.
, and
Li
,
X.
,
2020
, “
An Adaptive Deep Transfer Learning Method for Bearing Fault Diagnosis
,”
Measurement
,
151
, p.
107227
.
15.
Zhang
,
Y.
,
Zhou
,
T.
,
Huang
,
X.
,
Cao
,
L.
, and
Zhou
,
Q.
,
2021
, “
Fault Diagnosis of Rotating Machinery Based on Recurrent Neural Networks
,”
Measurement
,
171
, p.
108774
.
16.
Nichols
,
J. M.
,
Trickey
,
S. T.
, and
Seaver
,
M.
,
2006
, “
Damage Detection Using Multivariate Recurrence Quantification Analysis
,”
Mech. Syst. Signal Process.
,
20
(
2
), pp.
421
437
.
17.
Iwaniec
,
J.
,
Uhl
,
T.
,
Staszewski
,
J. W.
, and
Klepka
,
A.
,
2012
, “
Detection of Changes in Cracked Aluminium Plate Determinism by Recurrence Analysis
,”
Nonlinear Dyn.
,
70
(
1
), pp.
125
140
.
18.
Sen
,
A. K.
,
Longwic
,
R.
,
Litak
,
G.
, and
Górski
,
K.
,
2008
, “
Analysis of Cycle-to-Cycle Pressure Oscillations in a Diesel Engine
,”
Mech. Syst. Signal Process.
,
22
(
2
), pp.
362
373
.
19.
Donner
,
R.
,
Scholz-Reiter
,
B.
, and
Hinrichs
,
U.
,
2008
, “
Nonlinear Characterization of the Performance of Production and Logistics Networks
,”
J. Manuf. Syst.
,
27
(
2
), pp.
84
99
.
20.
Olyaee
,
M. H.
,
Yaghoubi
,
A.
, and
Yaghoobi
,
M.
,
2016
, “
Predicting Protein Structural Classes Based on Complex Networks and Recurrence Analysis
,”
J. Theor. Biol.
,
404
, pp.
375
382
.
21.
Syta
,
A.
,
Jonak
,
J.
,
Jedliński
,
L.
, and
Litak
,
G.
,
2012
, “
Failure Diagnosis of a Gear Box by Recurrences
,”
ASME J. Vib. Acoust.
,
134
(
4
), p.
041006
. (8 pages).
22.
Qian
,
Y.
,
Yan
,
R.
, and
Hu
,
S.
,
2014
, “
Bearing Degradation Evaluation Using Recurrence Quantification Analysis and Kalman Filter
,”
IEEE Trans. Instrum. Meas.
,
63
(
11
), pp.
2599
2610
.
23.
Zhou
,
C.
, and
Zhang
,
W.
,
2015
, “
Recurrence Plot Based Damage Detection Method by Integrating Control Chart
,”
Entropy
,
17
(
5
), pp.
2624
2641
.
24.
Mohamad
,
T. H.
,
Chen
,
Y.
,
Chaudhry
,
Z.
, and
Nataraj
,
C.
,
2018
, “
Gear Fault Detection Using Recur-Rence Quantification Analysis and Support Vector Machine
,”
J. Software Eng. Appl.
,
11
(
5
), pp.
181
203
.
25.
Xiao
,
D.
,
Huang
,
Y.
,
Qin
,
C.
,
Shi
,
H.
, and
Li
,
Y.
,
2019
, “
Fault Diagnosis of Induction Motors Using Recurrence Quantification Analysis and LSTM with Weighted BN
,”
Shock Vib.
,
2019
, p. 8325218.
26.
Eckmann
,
J.-P.
,
Kamphors
,
S. O.
, and
Ruelle
,
D.
,
1987
, “
Recurrence Plots of Dynamical Systems
,”
Europhys. Lett.
,
4
(
9
), pp.
973
977
.
27.
Webber
C. L.
, Jr
and
Zbilut
,
J. P.
,
1994
, “
Dynamical Assessment of Physiological Systems and States Using Recurrence Plot Strategies
,”
J. Appl. Physiol.
,
76
(
2
), pp.
965
973
.
28.
Thiel
,
M.
,
Romano
,
M. C.
,
Kurths
,
J.
,
Meucci
,
R.
,
Allaria
,
E.
, and
Arecchi
,
F. T.
,
2002
, “
Influence of Observational Noise on the Recurrence Quantification Analysis
,”
Phys. D
,
171
(
3
), pp.
138
152
.
29.
Kantz
,
H.
, and
Schreiber
,
T.
,
2004
,
Nonlinear Time Series Analysis
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
2004. ISBN: 0521821509
30.
Fraser
,
A. M.
, and
Swinney
,
H. L.
,
1986
, “
Independent Coordinates for Strange Attractors From Mutual Information
,”
Phys. Rev. A
,
33
(
2
), pp.
1134
1140
.
31.
Rodríguez
,
J. J.
,
Kuncheva
,
L. I.
, and
Alonso
,
C. J.
,
2006
, “
Rotation Forest: a new Classifier Ensemble Method
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
28
(
10
), pp.
1619
1630
.
32.
Sharma
,
A.
,
Amarnath
,
M.
, and
Kankar
,
P. K.
,
2017
, “
Novel Ensemble Techniques for Classification of Rolling Element Bearing Faults
,”
J. Braz. Soc. Mech. Sci. Eng.
,
39
(
3
), pp.
709
724
.
33.
Sharma
,
A.
,
Amarnath
,
M.
, and
Kankar
,
P. K.
,
2018
, “
Life Assessment and Health Monitoring of Rolling Element Bearings: An Experimental Study
,”
Life Cycle Reliab. Saf. Eng.
,
7
(
2
), pp.
97
114
.
You do not currently have access to this content.