Abstract

Stress corrosion cracking (SCC) had occurred in early-generation high-level nuclear waste tanks constructed by welding carbon steel. This paper describes an ultrasonic inspection system and its fundamental ability to detect and quantify the length of SCC on thick welded steel plates. The finite element method (FEM) was applied to simulate the welding process to estimate the welding residual stress field. Growth of stress corrosion cracks is driven by crack stress intensities exceeding the subcritical cracking threshold intensity. The subject plate was experimentally inspected with ultrasonic nondestructive evaluation (NDE) techniques to characterize the extent of SCC. The NDE system uses a piezoelectric transducer to generate guided waves in the thick steel plate, and a scanning laser Doppler vibrometer (SLDV) to measure multidimensional time–space wavefield data over a user-defined scanning area in the plate surface. The measured wavefield data can show wave interactions in a localized area in the plate due to the presence of the discontinuities of the SCC. To generate an inspection image that can precisely show the crack’s location and/or the dimension, the wavefield data are further processed to generate inspection image that maps the entire sample plate so the crack can be clearly identified in the plate while its length can be readily estimated. The ultrasonic test results for crack length agree well with the visually estimated length and are close to that predicted by the FEM for cracks in the weld residual stress field.

References

1.
Lam
,
P.-S.
,
Cheng
,
C.
,
Chao
,
Y. J.
,
Sindelar
,
R. L.
,
Stefek
,
T. M.
, and
Elder
,
J. B.
, “
Stress Corrosion Cracking
of
Carbon Steel Weldments
,”
Proc. ASME 2005 Pressure Vessels and Piping Conference
,
Denver, CO
,
July 17–21
, pp.
155
163
.
2.
Wiersma
,
B.
, and
Elder
,
J.
,
2008
, “A Structural Impact Assessment of Flaws Detected During Ultrasonic Examination of Tank 15,” Paper No. SRNS-STI-2008-0028, Savannah River National Laboratory.
3.
Kim
,
D.
,
Udpa
,
L.
, and
Udpa
,
S.
,
2004
, “
Remote Field Eddy Current Testing for Detection of Stress Corrosion Cracks in Gas Transmission Pipelines
,”
Mater. Lett.
,
58
(
15
), pp.
2102
2104
.
4.
Bosch
,
R.-W.
,
2005
, “
Electrochemical Impedance Spectroscopy for the Detection of Stress Corrosion Cracks in Aqueous Corrosion Systems at Ambient and High Temperature
,”
Corros. Sci.
,
47
(
1
), pp.
125
143
.
5.
Ramadan
,
S.
,
Gaillet
,
L.
,
Tessier
,
C.
, and
Idrissi
,
H.
,
2008
, “
Detection of Stress Corrosion Cracking of High-Strength Steel Used in Prestressed Concrete Structures by Acoustic Emission Technique
,”
Appl. Surf. Sci.
,
254
(
8
), pp.
2255
2261
.
6.
Kovac
,
J.
,
Alaux
,
C.
,
Marrow
,
T. J.
,
Govekar
,
E.
, and
Legat
,
A.
,
2010
, “
Correlations of Electrochemical Noise, Acoustic Emission and Complementary Monitoring Techniques During Intergranular Stress-Corrosion Cracking of Austenitic Stainless Steel
,”
Corros. Sci.
,
52
(
6
), pp.
2015
2025
.
7.
Du
,
G.
,
Li
,
J.
,
Wang
,
W.
,
Jiang
,
C.
, and
Song
,
S.
,
2011
, “
Detection and Characterization of Stress-Corrosion Cracking on 304 Stainless Steel by Electrochemical Noise and Acoustic Emission Techniques
,”
Corros. Sci.
,
53
(
9
), pp.
2918
2926
.
8.
Zeitvogel
,
D. T.
,
Matlack
,
K. H.
,
Kim
,
J.-Y.
,
Jacobs
,
L. J.
,
Singh
,
P. M.
, and
Qu
,
J.
,
2014
, “
Characterization of Stress Corrosion Cracking in Carbon Steel Using Nonlinear Rayleigh Surface Waves
,”
NDT & E Int.
,
62
, pp.
144
152
.
9.
Rose
,
J. L.
,
2014
,
Ultrasonic Guided Waves in Solid Media
,
Cambridge University Press
,
New York
.
10.
Giurgiutiu
,
V.
,
2008
,
Structural Health Monitoring: With Piezoelectric Wafer Active Sensors
,
Elsevier
,
New York
.
11.
Kim
,
S. B.
, and
Sohn
,
H.
,
2007
, “
Instantaneous Reference-Free Crack Detection Based on Polarization Characteristics of Piezoelectric Materials
,”
Smart Mater. Struct.
,
16
(
6
), pp.
2375
2387
.
12.
Yu
,
L.
, and
Giurgiutiu
,
V.
,
2008
, “
In Situ 2-D Piezoelectric Wafer Active Sensors Arrays for Guided Wave Damage Detection
,”
Ultrasonics
,
48
(
2
), pp.
117
134
.
13.
Davies
,
J.
, and
Cawley
,
P.
,
2009
, “
The Application of Synthetic Focusing for Imaging Crack-Like Defects in Pipelines Using Guided Waves
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
56
(
4
), pp.
759
771
.
14.
Chen
,
X.
,
Michaels
,
J. E.
,
Lee
,
S. J.
, and
Michaels
,
T. E.
,
2012
, “
Load-Differential Imaging for Detection and Localization of Fatigue Cracks Using Lamb Waves
,”
NDT & E Int.
,
51
, pp.
142
149
.
15.
Yu
,
L.
, and
Tian
,
Z.
,
2013
, “
Lamb Wave Structural Health Monitoring Using a Hybrid PZT-Laser Vibrometer Approach
,”
Struct. Health Monit.
,
12
(
5–6
), pp.
469
483
.
16.
Masserey
,
B.
, and
Fromme
,
P.
,
2017
, “
Analysis of High Frequency Guided Wave Scattering at a Fastener Hole With a View to Fatigue Crack Detection
,”
Ultrasonics
,
76
, pp.
78
86
.
17.
Hernandez-Valle
,
F.
,
Clough
,
A.
, and
Edwards
,
R.
,
2014
, “
Stress Corrosion Cracking Detection Using Non-Contact Ultrasonic Techniques
,”
Corros. Sci.
,
78
, pp.
335
342
.
18.
Masserey
,
B.
, and
Fromme
,
P.
,
2015
, “
In-Situ Monitoring of Fatigue Crack Growth Using High Frequency Guided Waves
,”
NDT & E Int.
,
71
, pp.
1
7
.
19.
Yu
,
L.
,
Tian
,
Z.
, and
Leckey
,
C. A.
,
2015
, “
Crack Imaging and Quantification in Aluminum Plates With Guided Wave Wavenumber Analysis Methods
,”
Ultrasonics
,
62
, pp.
203
212
.
20.
Lu
,
M.
,
Zhu
,
K.
, and
Wang
,
Q.
,
2021
, “
Fatigue Crack Detection in Steel Plates Using Guided Waves and an Energy-Based Imaging Approach
,”
Struct. Durability Health Monit.
,
15
(
3
), pp.
207
225
.
21.
Qin
,
X.
,
Zhang
,
S.
,
Xu
,
C.
,
Xie
,
J.
,
Chen
,
G.
, and
Song
,
G.
,
2020
, “
Detection of Surface Breaking Cracks Filled With Solid Impurities Using a Baseline-Free NEWS-TR Method
,”
IEEE Access
,
8
, pp.
56908
56920
.
22.
Wang
,
J.
,
Shen
,
Y.
,
Rao
,
D.
, and
Xu
,
W.
,
2021
, “
An Instantaneous-Baseline Multi-Indicial Nonlinear Ultrasonic Resonance Spectral Correlation Technique for Fatigue Crack Detection and Quantification
,”
Nonlinear Dyn.
,
103
(
1
), pp.
677
698
.
23.
Wang
,
J.
,
Shen
,
Y.
,
Rao
,
D.
, and
Xu
,
W.
,
2021
, “
Physical-Virtual Time Reversing of Nonlinear Lamb Waves for Fatigue Crack Detection and Quantification
,”
Mech. Syst. Signal Process.
,
160
, p.
107921
.
24.
Zima
,
B.
, and
Kędra
,
R.
,
2020
, “
Detection and Size Estimation of Crack in Plate Based on Guided Wave Propagation
,”
Mech. Syst. Signal Process.
,
142
, p.
106788
.
25.
Giurgiutiu
,
V.
,
2005
, “
Tuned Lamb Wave Excitation and Detection With Piezoelectric Wafer Active Sensors for Structural Health Monitoring
,”
J. Intell. Mater. Syst. Struct.
,
16
(
4
), pp.
291
305
.
26.
An
,
Y.-K.
,
Kwon
,
Y.
, and
Sohn
,
H.
,
2013
, “
Noncontact Laser Ultrasonic Crack Detection for Plates With Additional Structural Complexities
,”
Struct. Health Monit.
,
12
(
5–6
), pp.
522
538
.
27.
Lee
,
J.-R.
,
Jang
,
J.-K.
, and
Kong
,
C.-W.
,
2014
, “
Fully Noncontact Wave Propagation Imaging in an Immersed Metallic Plate With a Crack
,”
Shock Vib.
,
2014
.
28.
Ostachowicz
,
W.
,
Radzieński
,
M.
, and
Kudela
,
P.
,
2014
, “
50th Anniversary Article: Comparison Studies of Full Wavefield Signal Processing for Crack Detection
,”
Strain
,
50
(
4
), pp.
275
291
.
29.
Staszewski
,
W.
,
Lee
,
B.
, and
Traynor
,
R.
,
2007
, “
Fatigue Crack Detection in Metallic Structures With Lamb Waves and 3D Laser Vibrometry
,”
Meas. Sci. Technol.
,
18
(
3
), pp.
727
739
.
30.
Tse
,
W. T. P.
, and
Masurkar
,
F.
,
2017
, “
A Novel and Fully Non-Contact Type of Laser System for Generating and Receiving Lamb Waves to Detect Cracks Occurred in I-Beams
,”
Proceedings of the NDT in Canada 2017
,
Québec, Canada
,
June 6–8
.
31.
Xiao
,
W.
,
Yu
,
L.
,
Joseph
,
R.
, and
Giurgiutiu
,
V.
,
2020
, “
Fatigue-Crack Detection and Monitoring Through the Scattered-Wave Two-Dimensional Cross-Correlation Imaging Method Using Piezoelectric Transducers
,”
Sensors
,
20
(
11
), p.
3035
.
32.
Norli
,
P.
,
Vallée
,
E.
,
Aanes
,
M.
,
Spilde
,
A.
,
Duerud
,
H.
,
Prieur
,
F.
,
Bjåstad
,
T.
,
Standal
,
Ø
, and
Frijlink
,
M.
, “
Ultrasonic Detection of Stress Corrosion Cracks in Gaseous Atmosphere Using Broadband Transducers
,”
Proceedings of Meetings on Acoustics ICU
,
Bruges, Belgium
,
Sept. 3–6
,
Acoustical Society of America
, p.
045037
.
33.
Zapp
,
P. E.
, and
Lam
,
P.-S.
,
2000
, “
Preliminary Evaluation of Tank 15 Vapor Space Cracking
,” Savannah River Site (US).
34.
Chao
,
Y. J.
,
Qi
,
X.
, and
Tang
,
W.
,
2003
, “
Heat Transfer in Friction Stir Welding—Experimental and Numerical Studies
,”
ASME J. Manuf. Sci. Eng.
,
125
(
1
), pp.
138
145
.
35.
Chao
,
Y.-J.
, and
Qi
,
X.
,
1999
, “
Three-Dimensional Modeling of Gas Metal Arc Welding Process
,”
Trans. North Am. Manuf. Res. Inst. SME
, pp.
117
122
.
36.
Chao
,
Y.
,
Zhu
,
X.
, and
Qi
,
X.
,
2000
, “
‘WELDSIM—A WELDing SIMulation Code for the Determination of Transient and Residual Temperature, Stress, and Distortion
,”
Adv. Comput. Eng. Sci.
,
2
, pp.
1207
1211
.
37.
Hibbitt, Karlsson & Sorensen, Inc.
,
2001
,
ABAQUS Standard Version 6.2-1
,
ABAQUS
,
Pawtucket, RI
.
38.
Leong
,
W.
,
Staszewski
,
W.
,
Lee
,
B.
, and
Scarpa
,
F.
,
2005
, “
Structural Health Monitoring Using Scanning Laser Vibrometry: III. Lamb Waves for Fatigue Crack Detection
,”
Smart Mater. Struct.
,
14
(
6
), pp.
1387
1395
.
39.
Staszewski
,
W.
,
Lee
,
B.
,
Mallet
,
L.
, and
Scarpa
,
F.
,
2004
, “
Structural Health Monitoring Using Scanning Laser Vibrometry: I. Lamb Wave Sensing
,”
Smart Mater. Struct.
,
13
(
2
), pp.
251
260
.
40.
Rogge
,
M. D.
, and
Leckey
,
C. A.
,
2013
, “
Characterization of Impact Damage in Composite Laminates Using Guided Wavefield Imaging and Local Wavenumber Domain Analysis
,”
Ultrasonics
,
53
(
7
), pp.
1217
1226
.
41.
Ma
,
Z.
, and
Yu
,
L.
,
2021
, “
Lamb Wave Imaging With Actuator Network for Damage Quantification in Aluminum Plate Structures
,”
J. Intell. Mater. Syst. Struct.
,
32
(
2
), pp.
182
195
.
42.
Sohn
,
H.
,
Dutta
,
D.
,
Yang
,
J.-Y.
,
Park
,
H.-J.
,
DeSimio
,
M.
,
Olson
,
S.
, and
Swenson
,
E.
,
2011
, “
Delamination Detection in Composites Through Guided Wave Field Image Processing
,”
Compos. Sci. Technol.
,
71
(
9
), pp.
1250
1256
.
43.
Tian
,
Z.
,
Yu
,
L.
,
Leckey
,
C.
, and
Seebo
,
J.
,
2015
, “
Guided Wave Imaging for Detection and Evaluation of Impact-Induced Delamination in Composites
,”
Smart Mater. Struct.
,
24
(
10
), p.
105019
.
44.
Michaels
,
J. E.
,
2017
, “
Ultrasonic Wavefield Imaging: Research Tool or Emerging NDE Method?
,” AIP Conference Proceedings, AIP Publishing LLC, Vol.1806, No. 1, p.
020001
.
45.
Michaels
,
T. E.
,
Michaels
,
J. E.
, and
Ruzzene
,
M.
,
2011
, “
Frequency–Wavenumber Domain Analysis of Guided Wavefields
,”
Ultrasonics
,
51
(
4
), pp.
452
466
.
46.
Ruzzene
,
M.
,
2007
, “Frequency–Wavenumber Domain Filtering for Improved Damage Visualization,”
Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization
,
C. H.
Chen
, ed.,
World Scientific
,
Singapore
, pp.
591
611
.
47.
Ma
,
Z.
, and
Yu
,
L.
,
2019
, “
Lamb Wave Defect Detection
and
Evaluation Using a Fully Non-Contact Laser System
,”
Proceedings of the Health Monitoring of Structural and Biological Systems XIII
,
Denver, CO
,
Mar. 3–7
,
International Society for Optics and Photonics
, p.
1097221
.
You do not currently have access to this content.