Abstract

Implantable brain stimulation devices continue to be developed to treat and monitor brain conditions. As the complexity of these devices grows to include adaptive neuromodulation therapy, validating the operation and verifying the correctness of these systems becomes more complicated. The new complexities lie in the functioning of the device being dependent on the interaction with the patient and environmental factors such as noise and artifacts. Here, we present a hardware-in-the-loop (HIL) testing framework that employs computational models of pathological neural dynamics to test adaptive deep brain stimulation (DBS) devices prior to animal or human testing. A brain stimulation and recording electrode array is placed in the saline tank and connected to an adaptive neuromodulation system that measures and processes the synthetic signals and delivers stimulation back into the saline tank. A data acquisition system is used to detect the stimulation and provide feedback to the computational model in order to simulate the effects of stimulation on the neural dynamics. In this study, we used real-time computational models to emulate the dynamics of epileptic seizures observed in the anterior nucleus of the thalamus (ANT) in epilepsy patients and beta band (11–35 Hz) oscillations observed in the subthalamic nucleus (STN) of Parkinson's disease (PD) patients. These models simulated neuronal responses to electrical stimulation pulses and the saline tank tested hardware interactions between the detection algorithms and stimulation interference. We tested and validated the operation of adaptive DBS algorithms for seizure and beta band power suppression embedded in an implantable DBS system (Medtronic Summit RC+S). This study highlights the utility of the proposed hardware-in-the-loop framework to systematically test the adaptive DBS systems in the presence of system aggressors such as environmental noise and stimulation-induced electrical artifacts. This testing procedure can help ensure correctness and robustness of adaptive DBS devices prior to animal and human testing.

References

1.
Velisar
,
A.
,
Syrkin-Nikolau
,
J.
,
Blumenfeld
,
Z.
,
Trager
,
M. H.
,
Afzal
,
M. F.
,
Prabhakar
,
V.
, and
Bronte-Stewart
,
H.
,
2019
, “
Dual Threshold Neural Closed Loop Deep Brain Stimulation in Parkinson Disease Patients
,”
Brain Stimul.
,
12
(
4
), pp.
868
876
.10.1016/j.brs.2019.02.020
2.
Jirsa
,
V. K.
,
Stacey
,
W. C.
,
Quilichini
,
P. P.
,
Ivanov
,
A. I.
, and
Bernard
,
C.
,
2014
, “
On the Nature of Seizure Dynamics
,”
Brain
,
137
(
8
), pp.
2210
30
.10.1093/brain/awu133
3.
Feng
,
L.
,
Motelow
,
J. E.
,
Ma
,
C.
,
Biche
,
W.
,
McCafferty
,
C.
,
Smith
,
N.
,
Liu
,
M.
,
Zhan
,
Q.
,
Jia
,
R.
,
Xiao
,
B.
,
Duque
,
A.
, and
Blumenfeld
,
H.
,
2017
, “
Seizures and Sleep in the Thalamus: Focal Limbic Seizures Show Divergent Activity Patterns in Different Thalamic Nuclei
,”
J. Neurosci.
,
37
(
47
), pp.
11441
11454
.10.1523/JNEUROSCI.1011-17.2017
4.
van Albada
,
S. J.
, and
Robinson
,
P. A.
,
2009
, “
Mean-Field Modeling of the Basal Ganglia-Thalamocortical System. I Firing Rates in Healthy and Parkinsonian States
,”
J. Theor. Biol.
,
257
(
4
), pp.
642
63
.10.1016/j.jtbi.2008.12.018
5.
Neumann
,
W. J.
,
Staub-Bartelt
,
F.
,
Horn
,
A.
,
Schanda
,
J.
,
Schneider
,
G. H.
,
Brown
,
P.
, and
Kühn
,
A. A.
,
2017
, “
Long Term Correlation of Subthalamic Beta Band Activity With Motor Impairment in Patients With Parkinson's Disease
,”
Clin. Neurophysiol.
,
128
(
11
), pp.
2286
2291
.10.1016/j.clinph.2017.08.028
6.
Quinn
,
E. J.
,
Blumenfeld
,
Z.
,
Velisar
,
A.
,
Koop
,
M. M.
,
Shreve
,
L. A.
,
Trager
,
M. H.
,
Hill
,
B. C.
,
Kilbane
,
C.
,
Henderson
,
J. M.
, and
Brontë-Stewart
,
H.
,
2015
, “
Beta Oscillations in Freely Moving Parkinson's Subjects Are Attenuated During Deep Brain Stimulation
,”
Mov. Disord.
,
30
(
13
), pp.
1750
8
.10.1002/mds.26376
7.
Little
,
S.
,
Pogosyan
,
A.
,
Kuhn
,
A. A.
, and
Brown
,
P.
,
2012
, “
β band Stability Over Time Correlates With Parkinsonian Rigidity and Bradykinesia
,”
Exp. Neurol.
,
236
(
2
), pp.
383
8
.10.1016/j.expneurol.2012.04.024
8.
Rouse
,
A. G.
,
Stanslaski
,
S. R.
,
Cong
,
P.
,
Jensen
,
R. M.
,
Afshar
,
P.
,
Ullestad
,
D.
,
Gupta
,
R.
,
Molnar
,
G. F.
,
Moran
,
D. W.
, and
Denison
,
T. J.
,
2011
, “
A Chronic Generalized bi-Directional Brain-Machine Interface
,”
J. Neural Eng.
,
8
(
3
), p.
036018
.10.1088/1741-2560/8/3/036018
9.
Cheung
,
T.
,
Nuño
,
M.
,
Hoffman
,
M.
,
Katz
,
M.
,
Kilbane
,
C.
,
Alterman
,
R.
, and
Tagliati
,
M.
,
2013
, “
Longitudinal Impedance Variability in Patients With Chronically Implanted DBS Devices
,”
Brain Stimul
,
6
(
5
), pp.
746
51
.10.1016/j.brs.2013.03.010
10.
Stanslaski
,
S.
,
Herron
,
J.
,
Chouinard
,
T.
,
Bourget
,
D.
,
Isaacson
,
B.
,
Kremen
,
V.
,
Opri
,
E.
,
Drew
,
W.
,
Brinkmann
,
B. H.
,
Gunduz
,
A.
,
Adamski
,
T.
,
Worrell
,
G. A.
, and
Denison
,
T.
,
2018
, “
A Chronically Implantable Neural Coprocessor for Investigating the Treatment of Neurological Disorders
,”
IEEE Trans. Biomed. Circuits Syst.
,
12
(
6
), pp.
1230
1245
.10.1109/TBCAS.2018.2880148
11.
Koeglsperger
,
T.
,
Mehrkens
,
J. H.
, and
Bötzel
,
K.
,
2021
, “
Bilateral Double Beta Peaks in a PD Patient With STN Electrodes
,”
Acta Neurochir. (Wien)
,
163
(
1
), pp.
205
209
.10.1007/s00701-020-04493-5
12.
Proix
,
T.
,
Bartolomei
,
F.
,
Chauvel
,
P.
,
Bernard
,
C.
, and
Jirsa
,
V. K.
,
2014
, “
Permittivity Coupling Across Brain Regions Determines Seizure Recruitment in Partial Epilepsy
,”
J. Neurosci.
,
34
(
45
), pp.
15009
21
.10.1523/JNEUROSCI.1570-14.2014
13.
Wendling
,
F.
,
Bartolomei
,
F.
,
Bellanger
,
J. J.
, and
Chauvel
,
P.
,
2002
, “
Epileptic Fast Activity Can Be Explained by a Model of Impaired GABAergic Dendritic Inhibition
,”
Eur. J. Neurosci.
,
15
(
9
), pp.
1499
508
.10.1046/j.1460-9568.2002.01985.x
14.
Ableidinger
,
M.
,
Buckwar
,
E.
, and
Hinterleitner
,
H.
,
2017
, Aug 8“
A Stochastic Version of the Jansen and Rit Neural Mass Model: Analysis and Numerics
,”
J. Math. Neurosci.
,
7
(
1
), p.
8
.10.1186/s13408-017-0046-4
15.
van Rotterdam
,
A.
,
Lopes da Silva
,
F. H.
,
van den Ende
,
J.
,
Viergever
,
M. A.
, and
Hermans
,
A. J.
,
1982
, “
A Model of the Spatial-Temporal Characteristics of the Alpha Rhythm
,”
Bull. Math. Biol.
,
44
(
2
), pp.
283
305
.10.1007/BF02463252
16.
Kloeden
,
P. E.
, and
Platen
,
E.
,
1992
,
Numerical Solution of Stochastic Differential Equations
,
Springer
,
Berlin
.
17.
Cong
,
P.
,
Karande
,
P.
,
Landes
,
J.
,
Corey
,
R.
,
Stanslaski
,
S.
,
Santa
,
W.
,
Jensen
,
R.
,
Pape
,
F.
,
Moran
,
D.
, and
Denison
,
T.
,
2014
, “
A 32-Channel Modular bi-Directional Neural Interface System With Embedded DSP for Closed-Loop Operation
,” ESSCIRC 2014, 40th European Solid State Circuits Conference (
ESSCIRC
), Venice Lido, Italy, Sept. 22–26, pp.
99
102
.10.1109/ESSCIRC.2014.6942031
18.
Afzal
,
M. F.
,
Velisar
,
A.
,
Anidi
,
C.
,
Neuville
,
R.
,
Prabhakar
,
V.
, and
Bronte-Stewart
,
H.
,
2019
, “
Proceedings# 61: Subthalamic Neural Closed-Loop Deep Brain Stimulation for Bradykinesia in Parkinson's Disease
,”
Brain Stimul. Basic Transl. Clin. Res. Neuromodul.,
12
(
4
), pp.
e152
e154
.10.1016/j.brs.2018.12.103
You do not currently have access to this content.