Abstract

Micromotors can be used to build up complex microtools for internal medical applications as, for example, steerable catheters or optical and ultrasonic imaging system. The thinner and smaller the micromotors are, the less invasive is the implantation. However, miniaturization of motors implies some limitations in torque, speed, and efficiency. This paper theoretically analyzes the scale effects on torque, efficiency, and thermal behavior of high torque permanent magnet brushless DC (BLDC) motors with ferromagnetic core coils operating in different in-body environment. Using a finite element model of a two-phase BLDC motor, scalability laws are provided for diameters between 0.1 and 100 mm and current densities between 1 and 1000 A/mm2. Based on the impact of the cogging torque and overheating of the motor, scale-dependent operational limits are calculated. Operational threshold can be determined at the point where cogging torque becomes dominating over total torque, limiting the use of traditional iron-core motors in the microscale. Current density limits are provided based on three representative in-body thermal scenarios: respiratory tract, body fluid, and blood torrent. Maximum current densities and corresponding torque and efficiency have been obtained for different micromotor sizes considering safe in-body temperature operation as threshold. It is demonstrated that micromotors of sizes down to 0.1 mm diameter could be used in internal body environments with acceptable performance.

References

1.
Baltzer
,
M.
, and
Obermeier
,
E.
,
1997
, “
A Micro Shutter for Applications in Optical and Thermal Detectors
,” Proceedings of International Solid State Sensors and Actuators Conference (
Transducers '97
), Chicago, IL, June 19, pp.
67
70
.10.1109/SENSOR.1997.613583
2.
Mourlas
,
N. J.
,
Stark
,
K. C.
,
Mehregany
,
M.
, and
Phillips
,
S. M.
,
1996
, “
Exploring Polysilicon Micromotors for Data Storage Micro Disks
,”
Proceedings of IEEE Micro Electro Mechanical Systems
, San Diego, CA, Feb. 11–15, pp.
198
203
.10.1109/MEMSYS.1996.493853
3.
Bodnicki
,
M.
,
Wierciak
,
J.
,
Credo
,
W.
,
Bagiński
,
K.
, and
Wawrzyniuk
,
L.
,
2018
, “
Electromagnetic Angular Positioner Based on DC Micromotor
,”
MATEC Web Conf.
,
157
, p.
03003
.10.1051/matecconf/201815703003
4.
Suzumori
,
K.
,
Miyagawa
,
T.
,
Kimura
,
M.
, and
Hasegawa
,
Y.
,
1999
, “
Micro Inspection Robot for 1-in Pipes
,”
IEEE/ASME Trans. Mechatronics
,
4
(
3
), pp.
286
292
.10.1109/3516.789686
5.
Thielicke
,
E.
, and
Obermeier
,
E.
,
2000
, “
Microactuators and Their Technologies
,”
Mechatronics
,
10
(
4–5
), pp.
431
455
.10.1016/S0957-4158(99)00063-X
6.
Shumbayawonda
,
E.
,
Salifu
,
A. A.
,
Lekakou
,
C.
, and
Cosmas
,
J. P.
,
2018
, “
Numerical and Experimental Simulations of the Wireless Energy Transmission and Harvesting by a Camera Pill
,”
ASME J. Med. Devices
,
12
(
2
), p. 021002.10.1115/1.4039390
7.
Sheerer
,
C. D.
,
Drozek
,
D.
, and
Choi
,
J.
,
2015
, “
A Hand-Held Device for Controlling a Mounted, Motor Driven Colonoscope
,”
ASME J. Med. Devices
,
9
(
3
), p.
030924
.10.1115/1.4030601
8.
Peng
,
J.
,
Ma
,
L.
,
Li
,
X.
,
Tang
,
H.
,
Li
,
Y.
, and
Chen
,
S.
,
2019
, “
A Novel Synchronous Micro Motor for Intravascular Ultrasound Imaging
,”
IEEE Trans. Biomed. Eng.
,
66
(
3
), pp.
802
809
.10.1109/TBME.2018.2856930
9.
Kode
,
V.
, and
Cavusoglu
,
M. C.
,
2007
, “
Design and Characterization of a Novel Hybrid Actuator Using Shape Memory Alloy and DC Micromotor for Minimally Invasive Surgery Applications
,”
IEEE/ASME Trans. Mechatronics
,
12
(
4
), pp.
455
464
.10.1109/TMECH.2007.901940
10.
Munoz
,
F.
,
Alici
,
G.
, and
Li
,
W.
,
2016
, “
A Magnetically Actuated Drug Delivery System for Robotic Endoscopic Capsules
,”
ASME J. Med. Devices
,
10
(
1
), p.
011004
.10.1115/1.4031811
11.
Wang
,
T.
,
Lancée
,
C.
,
Beurskens
,
R.
,
Meijer
,
J.
,
Knapen
,
B.
,
Van Der Steen
,
A. F. W.
, and
Van Soest
,
G.
,
2014
, “
Development of a High-Speed Synchronous Micro Motor and Its Application in Intravascular Imaging
,”
Sens. Actuators, A Phys.
,
218
, pp.
60
68
.10.1016/j.sna.2014.07.020
12.
Su
,
H.
,
Hu
,
Y.
,
Karimi
,
H. R.
,
Knoll
,
A.
,
Ferrigno
,
G.
, and
De Momi
,
E.
,
2020
, “
Improved Recurrent Neural Network-Based Manipulator Control With Remote Center of Motion Constraints: Experimental Results
,”
Neural Networks
,
131
, pp.
291
299
.10.1016/j.neunet.2020.07.033
13.
Su
,
H.
,
Qi
,
W.
,
Hu
,
Y.
,
Karimi
,
H. R.
,
Ferrigno
,
G.
, and
Momi
,
E. D.
,
2022
, “
An Incremental Learning Framework for Human-Like Redundancy Optimization of Anthropomorphic Manipulators
,”
IEEE Trans. Ind. Inf.
,
18
(
3
), pp.
1864
1872
.10.1109/TII.2020.3036693
14.
Perez-Diaz
,
J. L.
,
Diez-Jimenez
,
E.
,
Valiente-Blanco
,
I.
,
Cristache
,
C.
,
Alvarez-Valenzuela
,
M.-A.
, and
Sanchez-Garcia-Casarrubios
,
J.
,
2014
, “
Contactless Mechanical Components: Gears, Torque Limiters and Bearings
,”
Machines
,
2
(
4
), pp.
312
324
.10.3390/machines2040312
15.
Perez-Diaz
,
J. L.
,
Diez-Jimenez
,
E.
,
Valiente-Blanco
,
I.
,
Cristache
,
C.
,
Alvarez-Valenzuela
,
M.-A.
,
Sanchez-Garcia-Casarrubios
,
J.
,
Ferdeghini
,
C.
,
et al.
,
2015
, “
Performance of Magnetic-Superconductor Non-Contact Harmonic Drive for Cryogenic Space Applications
,”
Machines
,
3
(
3
), pp.
138
156
.10.3390/machines3030138
16.
Diez-Jimenez
,
E.
,
Sanchez-Montero
,
R.
, and
Martinez-Muñoz
,
M.
,
2017
, “
Towards Miniaturization of Magnetic Gears: Torque Performance Assessment
,”
Micromachines
,
9
(
1
), p.
16
.10.3390/mi9010016
17.
Perez-Diaz
,
J. L.
,
Valiente-Blanco
,
I.
,
Cristache
,
C.
,
Sanchez-García-Casarubios
,
J.
,
Rodriguez
,
F.
,
Esnoz
,
J.
, and
Diez-Jimenez
,
E.
,
2019
, “
A Novel High Temperature Eddy Current Damper With Enhanced Performance by Means of Impedance Matching
,”
Smart Mater. Struct.
,
28
(
2
), p.
025034
.10.1088/1361-665X/aafc11
18.
Munoz, F., Alici, G., and Li, W.,
2021
, “
Ultra-Efficient Wireless Powered Micro-Robotic Joint for Health Applications
,” UWIPOM2, Alcala de Henares, Spain, accessed Oct. 25, 2021, www.uwipom2.eu
19.
Esnoz-Larraya
,
J.
,
Valiente-Blanco
,
I.
,
Cristache
,
C.
,
Sanchez
,
J.
,
Rodriguez-Celis
,
F.
,
Diez-Jimenez
,
E.
, and
Perez-Diaz
,
J. L.
,
2017
, “
OPTIMAGDRIVE: High Performance Magntic Gears Development for Space Applications
,”
17th European Space Mechanisms and Tribology Symposium
, Hatfield, UK, Sept. 20–22, pp.
1
5
.https://www.researchgate.net/publication/331036696_OPTIMAGDRIVE_High_Performance_Magnetic_Gears_Development_for_Space_Application
20.
Koser
,
H.
, and
Lang
,
J. H.
,
2006
, “
Magnetic Induction Micromachine—Part II: Fabrication and Testing Florent
,”
J. Microelectromech. Syst.
,
15
(
2
), pp.
415
426
.10.1109/JMEMS.2006.872238
21.
Arnold
,
D. P.
,
Das
,
S.
,
Cros
,
F.
,
Zana
,
I.
,
Allen
,
M. G.
,
Member
,
S.
, and
Lang
,
J. H.
,
2006
, “
Magnetic Induction Machines Integrated Into Bulk-Micromachined Silicon
,”
J. Micromech. Syst.
,
15
(
2
), pp.
406
414
.10.1109/JMEMS.2006.873951
22.
Dario
,
P.
,
Carrozza
,
M. C.
,
Stefanini
,
C.
, and
D'Attanasio
,
S.
,
1998
, “
A Mobile Microrobot Actuated by a New Electromagnetic Wobble Micromotor
,”
IEEE/ASME Trans. Mechatronics
,
3
(
1
), pp.
9
16
.10.1109/3516.662863
23.
Kim
,
J. H.
,
Jung
,
I. S.
, and
Sung
,
H. G.
,
2006
, “
Design and Manufacturing of Ultra Small Actuator
,”
IEEE International Conference on Mechatronics, ICM
, Budapest, Hungary, July 3–5, pp.
23
26
.10.1109/ICMECH.2006.252490
24.
Merzaghi
,
S.
,
Koechli
,
C.
, and
Perriard
,
Y.
,
2011
, “
Development of a Hybrid MEMS BLDC Micromotor
,”
IEEE Trans. Ind. Appl.
,
47
(
1
), pp.
3
11
.10.1109/TIA.2010.2090841
25.
Williams
,
C. B.
,
Shearwood
,
C.
,
Mellor
,
P. H.
, and
Yates
,
R. B.
,
1997
, “
Modelling and Testing of a Frictionless Levitated Micromotor
,”
Sens. Actuators, A Phys.
,
61
(
1–3
), pp.
469
473
.10.1016/S0924-4247(97)80307-X
26.
Lyshevski
,
S. E.
,
Nazarov
,
A.
, and
Boggs
,
J.
,
2002
, “
Integrated Micro- and Miniscale Electromechanical Systems With Permanent-Magnet Servo-Motors and VLSI Drivers-Controllers
,”
Mechatronics
,
12
(
9–10
), pp.
1115
1131
.10.1016/S0957-4158(02)00017-X
27.
Diez-Jimenez
,
E.
,
Rizzo
,
R.
,
Gómez-García
,
M. J.
, and
Corral-Abad
,
E.
,
2019
, “
Review of Passive Electromagnetic Devices for Vibration Damping and Isolation
,”
Shock Vib.
,
2019
, pp.
1
16
.10.1155/2019/1250707
28.
Diez-Jimenez
,
E.
,
Alén-Cordero
,
C.
,
Alcover-Sánchez
,
R.
, and
Corral-Abad
,
E.
,
2021
, “
Modelling and Test of an Integrated Magnetic Spring-Eddy Current Damper for Space Applications
,”
Actuators
,
10
(
1
), pp.
8
18
.10.3390/act10010008
29.
Han
,
D.
,
Nagai
,
K.
, and
Shinshi
,
T.
,
2020
, “
Micro Electromagnetic Flat Motor Using an 80-Poles and 0.3-Mm-Thick Ring Magnet for High Torque
,”
Proceedings of IEEE International Conference Micro Electro Mechanical Systems
, Vancouver, BC, Canada, Jan. 18–22, pp.
509
512
.10.1109/MEMS46641.2020.9056225
30.
Binns
,
K. J.
, and
Shimmi
,
D. W.
,
1995
, “
The Relationship Between Performance Characteristics and Sizes of Permanent Magnet Motors
,”
Electrical Machines and Drives
, Durham, UK, Sept. 11–13, pp.
423
427
.10.1049/cp:19950907
31.
Liu
,
D. K. C.
,
Friend
,
J.
, and
Yeo
,
L.
,
2010
, “
A Brief Review of Actuation at the Micro-Scale Using Electrostatics, Electromagnetics and Piezoelectric Ultrasonics
,”
Acoust. Sci. Technol.
,
31
(
2
), pp.
115
123
.10.1250/ast.31.115
32.
Peirs
,
J.
,
Reynaerts
,
D.
, and
Van Brussel
,
H.
,
1998
, “
Scale Effects and Thermal Considerations for Micro-Actuators
,”
Proceedings of IEEE International Conference Robotics Automation
, Vol.
2
, Leuven, Belgium, May 20, pp.
1516
1521
.10.1109/ROBOT.1998.677333
33.
Narayanan
,
A. M.
, and
Bertrand
,
A.
,
2020
, “
Analysis of Miniaturization Effects and Channel Selection Strategies for EEG Sensor Networks With Application to Auditory Attention Detection
,”
IEEE Trans. Biomed. Eng.
,
67
(
1
), pp.
234
244
.10.1109/TBME.2019.2911728
34.
Lin
,
C. L.
,
Srivastava
,
A.
,
Coffey
,
D.
,
Keefe
,
D.
,
Horner
,
M.
,
Swenson
,
M.
, and
Erdman
,
A.
,
2014
, “
A System for Optimizing Medical Device Development Using Finite Element Analysis Predictions
,”
ASME J. Med. Devices
,
8
(
2
), p.
020941
.10.1115/1.4027096
35.
Hopf
,
R.
,
Gessat
,
M.
,
Russ
,
C.
,
Sündermann
,
S. H.
,
Falk
,
V.
, and
Mazza
,
E.
,
2017
, “
Finite Element Stent Modeling for the Postoperative Analysis of Transcatheter Aortic Valve Implantation
,”
ASME J. Med. Devices
, (
2
), p.
021002
.10.1115/1.4036334
36.
Arnold
,
D. P.
, and
Wang
,
N.
,
2009
, “
Permanent Magnets for MEMS
,”
J. Microelectromech. Syst.
,
18
(
6
), pp.
1255
1266
.10.1109/JMEMS.2009.2034389
37.
Muñoz-Martínez
,
M.
,
Diez-Jimenez
,
E.
,
Gómez-García
,
M. J.
,
Rizzo
,
R.
, and
Musolino
,
A.
,
2019
, “
Torque and Bearing Reaction Forces Simulation of Micro-Magnetic Gears
,”
Appl. Comput. Electromagn. Soc. J.
,
34
(
4
), pp.
541
546
.https://www.researchgate.net/publication/358089452_Torque_and_Bearing_Reaction_Forces_Simulation_of_Micro-Magnetic_Gears
38.
Martinez-Muñoz
,
M.
,
DIez-Jimenez
,
E.
,
Sanchez-Montero
,
R.
,
Lopez-Espi
,
P. L.
, and
Martinez-Rojas
,
J. A.
,
2019
, “
Analysis of the Geometric Parameters Influence in PCB Fixtures for 2D Multipole Magnetization Patterning of Thin Layer Micro-Magnets
,”
Int. J. Appl. Electromagn. Mech.
,
61
(
1
), pp.
59
71
.10.3233/JAE-180121
39.
Steinmetz
,
C. P.
,
1892
, “
On the Law of Hysteresis (Part II) and Other Phenomena of the Magnetic Circuit
,”
Trans. Am. Inst. Electr. Eng.
,
IX
(
1
), pp.
619
758
.10.1109/T-AIEE.1892.5570469
40.
Valiente-Blanco
,
I.
,
Perez-Diaz
,
J. L.
,
Perez-Del-Alamo
,
J. L.
, and
Diez-Jimenez
,
E.
,
2020
, “
Temperature Dependence of the Friction Coefficient of Grease-Lubricated PTFE Linear Bushings Against Titanium Grade 5 Alloy (Ti6Al4V) and Life Tests Operating at High-Speed
,”
ASME J. Tribol.
,
142
(
9
), p.
091701
.10.1115/1.4046708
41.
Yarmolenko
,
P. S.
,
Moon
,
E. J.
,
Landon
,
C.
,
Manzoor
,
A.
,
Hochman
,
D. W.
,
Viglianti
,
B. L.
, and
Dewhirst
,
M. W.
,
2011
, “
Thresholds for Thermal Damage to Normal Tissues: An Update
,”
Int. J. Hyperth.
,
27
(
4
), pp.
320
343
.10.3109/02656736.2010.534527
42.
Incopera
,
F. P.
,
2015
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons
, Hoboken, NJ.
43.
Betts
,
G.
, and
Dsaix
,
P.
,
2013
, “
Anatomy & Physiology Vol 2
,”
Anatomy & Physiology
,
OpenStax College
, Rice University, Houston, TX, pp.
837
903
.
44.
Syed
,
M. N.
,
Ahmad
,
M. M.
,
Ahmad
,
M. N.
,
Hussaini
,
S.
,
Muhammad
,
M. N.
,
Pir
,
S. H. A.
,
Khandheria
,
B. K.
,
Tajik
,
A. J.
, and
Ammar
,
K. A.
,
2017
, “
Normal Diameter of the Ascending Aorta in Adults: The Impact of Stricter Criteria on Selection of Subjects Free of Disease
,”
J. Am. Coll. Cardiol.
,
69
(
11
), p.
2075
.10.1016/S0735-1097(17)35464-5
45.
Churchill
,
S. W.
, and
Chu
,
H. H. S.
,
1975
, “
Correlating Equations for Laminar and Turbulent Free Convection From a Vertical Plate
,”
Int. J. Heat Mass Transfer
,
18
(
11
), pp.
1323
1329
.10.1016/0017-9310(75)90243-4
46.
Zukauskas
,
A.
,
1972
, “
Heat Transfer From Tubes in Crossflow
,”
Adv. Heat Transfer
,
8
, pp.
93
160
.10.1016/S0065-2717(08)70038-8
47.
Bianchi
,
N.
, and
Bolognani
,
S.
,
2002
, “
Design Techniques for Reducing the Cogging Torque in Surface-Mounted PM Motors
,”
IEEE Trans. Ind. Appl.
,
38
(
5
), pp.
1259
1265
.10.1109/TIA.2002.802989
48.
Gilles
,
P. A.
,
Delamare
,
J.
,
Cugat
,
O.
, and
Schanen
,
J. L.
,
2000
, “
Design of a Permanent Magnet Planar Synchronous Micromotor
,”
Conference Record of the IAS Annual Meeting on Industrial Applications of Electrical Energy
, Vol.
1
, Rome, Italy, Oct. 8–12, pp.
223
227
.10.1109/IAS.2000.881090
49.
Achotte
,
N.
,
Gilles
,
P. A.
,
Cugat
,
O.
,
Delamare
,
J.
,
Gaud
,
P.
, and
Dieppedale
,
C.
,
2006
, “
Planar Brushless Magnetic Micromotors
,”
J. Microelectromech. Syst.
,
15
(
4
), pp.
1001
1014
.10.1109/JMEMS.2006.872232
You do not currently have access to this content.