Abstract

Biomedical robotic systems continue to hold unlimited potential for surgical procedures. Robotized laser endoscopic tools provide surgeons with increased accuracy in the laser ablation of tissue and tumors. The research here catalogs the design and implementation of a new laser endoscopic tool for tissue ablation. A novel feature of this new device is the inclusion of a feedback loop that measures the position of the laser beam via a photodetector sensor. The scale of this new device was governed by the dimensions of the photodetector sensor. The tip of the laser's fiber optic cable is controlled by the torque interaction between permanent magnet rings surrounding the fiber-optic and the custom-designed solenoid coils. Prior to building the physical test-bed, the system was modeled and simulated using comsol software. In preclinical trials, the physical experimental results showed that the designed prototype laser scanner system accurately tracks different ablation patterns and gives a consistent output position for the laser beam; however, the heat diffusion into the tissue around the desired line of the geometric shape would give wider ablation margins than was desirable.

References

1.
Ghosh
,
A.
,
2011
,
Scaling Laws
,
Springer
,
New York
, pp.
61
94
.
2.
Zhong
,
H.
,
Duan
,
T.
,
Lan
,
H.
,
Zhou
,
M.
, and
Gao
,
F.
,
2018
, “
Review of Low-Cost Photoacoustic Sensing and Imaging Based on Laser Diode and Light-Emitting Diode
,”
Sensors
,
18
(
7
), p.
2264
.10.3390/s18072264
3.
Ida
,
T.
,
Iwazaki
,
H.
,
Kawaguchi
,
Y.
,
Kawauchi
,
S.
,
Ohkura
,
T.
,
Iwaya
,
K.
,
Tsuda
,
H.
,
Saitoh
,
D.
,
Sato
,
S.
, and
Iwai
,
T.
,
2016
, “
Burn Depth Assessments by Photoacoustic Imaging and Laser Doppler Imaging
,”
Wound Repair Regen.
,
24
(
2
), pp.
349
355
.10.1111/wrr.12374
4.
Katzir
,
A.
,
1993
,
Lasers and Optical Fibers in Medicine
,
Sciencedirect
, San Diego, CA.
5.
Yelin
,
D.
,
Rizvi
,
I.
,
White
,
W. M.
,
Motz
,
J. T.
,
Hasan
,
T.
,
Bouma
,
B. E.
, and
Tearney
,
G. J.
,
2006
, “
Three-Dimensional Miniature Endoscopy
,”
Nature
,
443
(
7113
), pp.
765
765
.10.1038/443765a
6.
Patel
,
C. K. N.
,
1964
, “
Continuous-Wave Laser Action on Vibrational-Rotational Transitions of CO2
,”
Phys. Rev.
,
136
(
5A
), pp.
A1187
A1193
.10.1103/PhysRev.136.A1187
7.
Jako
,
G.
,
1972
, “
Laser Surgery of the Vocal Cords
,”
Laryngoscope
,
82
(
12
), pp.
2204
2216
.10.1288/00005537-197212000-00009
8.
Vaughan
,
C. W.
,
Strong
,
M.
, and
Jako
,
G. J.
,
1978
, “
Laryngeal Carcinoma: Transoral Treatment Utilizing the CO2 Laser
,”
Am. J. Surg.
,
136
(
4
), pp.
490
493
.10.1016/0002-9610(78)90267-2
9.
White
,
J. M.
,
Goodis
,
H. E.
, and
Rose
,
C. L.
,
1991
, “
Use of the Pulsed Nd:YAG Laser for Intraoral Soft Tissue Surgery
,”
Lasers Surg. Med.
,
11
(
5
), pp.
455
461
.10.1002/lsm.1900110511
10.
Skolnik
,
E. M.
,
Martin
,
L.
,
Yee
,
K. F.
, and
Wheatley
,
M. A.
,
1975
, “
Radiation Failures in Cancer of the Larynx
,”
Ann. Otol. Rhinol. Laryngol.
,
84
(
6
), pp.
804
811
.10.1177/000348947508400612
11.
Rubinstein
,
M.
, and
Armstrong
,
W. B.
,
2011
, “
Transoral Laser Microsurgery for Laryngeal Cancer: A Primer and Review of Laser Dosimetry
,”
Lasers Med. Sci.
,
26
(
1
), pp.
113
124
.10.1007/s10103-010-0834-5
12.
Milford
,
C. A.
, and
O'Flynn
,
P. E.
,
1991
, “
Management of Verrucous Carcinoma of the Larynx
,” Ann. Otol. Rhinol. Laryngol.,
16
(
2
), pp.
160
162
.
13.
Arnold
,
D. A.
,
1995
, “
SwiftLase: A New Technology for Char-Free Ablation in Rectal Surgery
,”
Biomedical Optoelectronic Instrumentation
(International Society for Optics and Photonics),
J. A.
Harrington
,
D. M.
Harris
, and
A.
Katzir
, eds., Vol.
2396
,
SPIE
, Bellingham, WA, pp.
230
232
.
14.
Remacle
,
M.
,
Hassan
,
F.
,
Cohen
,
D.
,
Lawson
,
G.
, and
Delos
,
M.
,
2005
, “
New Computer-Guided Scanner for Improving CO2 Laser-Assisted Microincision
,”
Eur. Arch. Otorhinolaryngol.
,
262
(
2
), pp.
113
119
.10.1007/s00405-004-0746-8
15.
Remacle
,
M.
,
Lawson
,
G.
,
Nollevaux
,
M.-C.
, and
Delos
,
M.
,
2008
, “
Current State of Scanning Micromanipulator Applications With the Carbon Dioxide Laser
,”
Ann. Otol. Rhinol. Laryngol.
,
117
(
4
), pp.
239
244
.10.1177/000348940811700401
16.
Remacle
,
M.
, and
Prasad
,
V. M. N.
,
2018
, “
Preliminary Experience in Transoral Laryngeal Surgery With a Flexible Robotic System for Benign Lesions of the Vocal Folds
,”
Eur. Arch. Oto-Rhino-Laryngol.
,
275
(
3
), pp.
761
765
.10.1007/s00405-018-4900-0
17.
Ferhanoglu
,
O.
,
Yildirim
,
M.
,
Subramanian
,
K.
, and
Ben-Yakar
,
A.
,
2014
, “
A 5-mm Piezo-Scanning Fiber Device for High Speed Ultrafast Laser Microsurgery
,”
Opt. Soc.
,
5
(
7
), p.
2023
.10.1364/BOE.5.002023
18.
Chen
,
Y.
,
Xu
,
S.
,
Squires
,
A.
,
Seifabadi
,
R.
,
Turkbey
,
I. B.
,
Pinto
,
P. A.
,
Choyke
,
P.
,
Wood
,
B.
, and
Tse
,
Z. T. H.
,
2018
, “
Mri-Guided Robotically Assisted Focal Laser Ablation of the Prostate Using Canine Cadavers
,”
IEEE Trans. Biomed. Eng.
,
65
(
7
), pp.
1434
1442
.10.1109/TBME.2017.2756907
19.
Boyde
,
A.
,
2018
, “
Evaluation of Laser Ablation Microtomy for Correlative Microscopy of Hard Tissues
,”
J. Microsc.
,
271
(
1
), pp.
17
30
.10.1111/jmi.12689
20.
Hare
,
D. J.
,
Kysenius
,
K.
,
Paul
,
B.
,
Knauer
,
B.
,
Hutchinson
,
R. W.
,
O'Connor
,
C.
,
Fryer
,
F.
,
Hennessey
,
T. P.
,
Bush
,
A. I.
,
Crouch
,
P. J.
, and
Doble
,
P. A.
,
2017
, “
Imaging Metals in Brain Tissue by Laser Ablation—Inductively Coupled Plasma—Mass Spectrometry (LA-ICP-MS)
,”
J Vis. Exp.
,
119
, Article ID: e55042, pp.
1
8
.10.3791/55042
21.
Žemaitis
,
A.
,
Gaidys
,
M.
,
Brikas
,
M.
,
Gečys
,
P.
,
Račiukaitis
,
G.
, and
Gedvilas
,
M.
,
2018
, “
Advanced Laser Scanning for Highly-Efficient Ablation and Ultrafast Surface Structuring: Experiment and Model
,”
Sci. Rep.
,
8
(
1
), Article ID: 17376, pp.
1
8
.10.1038/s41598-018-35604-z
22.
Boskma
,
K. J.
,
Scheggi
,
S.
, and
Misra
,
S.
,
2016
, “
Closed-Loop Control of a Magnetically-Actuated Catheter Using Two-Dimensional Ultrasound Images
,” Sixth IEEE International Conference on Biomedical Robotics and Biomechatronics (
BioRob
), UTown, Singapore, June 26–29, pp.
61
66
.10.1109/BIOROB.2016.7523599
23.
Ullrich
,
F.
,
Schuerle
,
S.
,
Pieters
,
R.
,
Dishy
,
A.
,
Michels
,
S.
, and
Nelson
,
B. J.
,
2014
, “
Automated Capsulorhexis Based on a Hybrid Magnetic-Mechanical Actuation System
,” IEEE International Conference on Robotics and Automation (
ICRA
), Hong Kong, China, May 31–June 7, pp.
4387
4392
.10.1109/ICRA.2014.6907498
24.
Acemoglu
,
A.
, and
Mattos
,
L. S.
,
2017
, “
Magnetic Laser Scanner for Endoscopic Microsurgery
,” IEEE International Conference on Robotics and Automation (
ICRA
), Singapore, May 29–June 3, pp.
4215
4220
.10.1109/ICRA.2017.7989485
25.
Acemoglu
,
A.
,
Pucci
,
D.
, and
Mattos
,
L. S.
,
2019
, “
Design and Control of a Magnetic Laser Scanner for Endoscopic Microsurgeries
,”
IEEE/ASME Trans. Mechatronics
,
24
(
2
), pp.
527
537
.10.1109/TMECH.2019.2896248
26.
Zhao
,
M.
,
Vrielink
,
T. J. C. O.
,
Kogkas
,
A. A.
,
Runciman
,
M. S.
,
Elson
,
D. S.
, and
Mylonas
,
G. P.
,
2020
, “
Laryngotors: A Novel Cable-Driven Parallel Robotic System for Transoral Laser Phonosurgery
,”
IEEE Rob. Autom. Lett.
,
5
(
2
), pp.
1516
1523
.10.1109/LRA.2020.2969186
27.
Mohammadbagherpoor
,
H.
,
Acemoglu
,
A.
,
Mattos
,
L. S.
,
Caldwell
,
D.
,
Johnson
,
J. E.
,
Muth
,
J.
, and
Grant
,
E.
,
2019
, “
Closed-Loop Control of a Magnetically Actuated Fiber-Coupled Laser for Computer-Assisted Laser Microsurgery
,” 19th International Conference on Advanced Robotics (
ICAR
), Belo Horizonte, Brasil, Dec. 2–6, pp.
654
659
.10.1109/ICAR46387.2019.8981584
28.
Mohammadbagherpoor
,
H.
,
Ierymenko
,
P.
,
Craver
,
M. H.
,
Carlson
,
J.
,
Dausch
,
D.
,
Grant
,
E.
, and
D. Lucey
,
J.
,
2020
, “
An Implantable Wireless Inductive Sensor System Designed to Monitor Prosthesis Motion in Total Joint Replacement Surgery
,”
IEEE Trans. Biomed. Eng.
,
67
(
6
), pp.
1718
1726
.10.1109/TBME.2019.2943808
29.
COMSOL
,
2020
,
COMSOL Multiphysics® v. 5.6
,
Stockholm
,
Sweden
.
30.
Adhikari
,
R.
,
Kaundal
,
R.
,
Sarkar
,
A.
,
Rana
,
P.
, and
Das
,
A. K.
,
2012
, “
The Cantilever Beam Magnetometer: A Simple Teaching Tool for Magnetic Characterization
,”
Am. Assoc. Phys. Teachers (AAPT)
,
80
(
3
), pp.
225
231
.10.1119/1.3679840
31.
Thorlabs
,
2020
, ThorlabsInc., Newton, NJ, accessed Dec. 10, 2021, https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=4400&pn=PDP90A
32.
Mohammadbagherpoor
,
H.
, and
Grant
,
E.
,
2019
, “
Identification of Box-Jenkins Model for a Magnetically Actuated Fiber-Coupled Laser for Computer Assisted Laser Surgery
,”
Proceedings: Joint 30th National Congress SPIGC and Joint Workshop on New Technologies for Computer/Robot Assisted Surgery (CRAS 2019)
,
CRAS
, Genoa, Italy, Mar. 21–22, pp.
14
15
.
33.
MATLAB,
2019
,
Version 9.6 (R2019a)
,
The MathWorks
, Natick, MA.
34.
Bagherpoor
,
H.
, and
Salmasi
,
F. R.
,
2015
, “
Robust Model Reference Adaptive Output Feedback Tracking for Uncertain Linear Systems With Actuator Fault Based on Reinforced Dead-Zone Modification
,”
ISA Trans.
,
57
, pp.
51
56
.10.1016/j.isatra.2015.02.007
35.
Geraee
,
S.
,
Mohammadbagherpoor
,
H.
,
Shafiei
,
M.
,
Valizadeh
,
M.
,
Montazeri
,
F.
, and
Feyzi
,
M. R.
,
2018
, “
Regenerative Braking of Electric Vehicle Using a Modified Direct Torque Control and Adaptive Control Theory
,”
Comp. Elec. Eng.
,
69
, pp.
85
97
.10.1016/j.compeleceng.2018.05.022
36.
Kamaldar
,
M.
, and
Hoagg
,
J. B.
,
2017
, “
Time-Domain Adaptive Harmonic Control for Rejection of Sinusoidal Disturbances Acting on an Unknown Discrete-Time System
,” American Control Conference (
ACC
), Seattle, WA, May 24–26 , pp.
5690
5695
.10.23919/ACC.2017.7963841
37.
Kamaldar
,
M.
, and
Hoagg
,
J. B.
,
2017
, “
Adaptive Harmonic Steady-State Control for Rejection of Sinusoidal Disturbances Acting on a Completely Unknown System
,”
Int. J. Adapt. Control Signal Process.
,
31
(
9
), pp.
1308
1326
.10.1002/acs.2766
You do not currently have access to this content.