Abstract

Needle insertion is a common procedure in percutaneous puncture. A motion planner for a steerable needle that considers the risk level of the path in anatomical environment and the actual deflection of clinical needle is necessary. A novel pre-operative motion planner for a steerable needle controlled by robot is proposed. Our method utilizes sampling-based planner to compute candidate path in the reachable region, and the path solutions are optimized by calculating the cost of a path based on a cost map. The cost map, which is built based on repulsive field theory from CT image, encodes the information of the obstacle locations and the criticality of the anatomical environment. The empirical formula that can predict needle trajectory is obtained by insertion experiments. Experiments show that under the guidance of our planner, the positioning error in phantom made with gelatin and three-dimensional (3D) printed models is less than 1.1 mm. Comparing with the straight-line insertion method in the same phantom, the positioning error was reduced by 80%. The results indicate that the motion planner has the potential to provide effective guidance for robot-assisted puncture surgery while enhancing the position precision and patient safety.

References

1.
Gao
,
D.
,
Lei
,
Y.
, and
Zheng
,
H.
,
2012
, “
Needle Steering for Robot-Assisted Insertion Into Soft Tissue: A Survey
,”
Chin. J. Mech. Eng.
,
25
(
4
), pp.
629
638
.10.3901/CJME.2012.04.629
2.
Blumenfeld
,
P.
,
Hata
,
N.
,
DiMaio
,
S.
,
Zou
,
K.
,
Haker
,
S.
,
Fichtinger
,
G.
, and
Tempany
,
C. M.
,
2007
, “
Transperineal Prostate Biopsy Under Magnetic Resonance Image Guidance: A Needle Placement Accuracy Study
,”
J. Magn. Reson. Imaging
,
26
(
3
), pp.
688
694
.10.1002/jmri.21067
3.
Schouten
,
M. G.
,
Bomers
,
J. G. R.
,
Yakar
,
D.
,
Huisman
,
H.
,
Rothgang
,
E.
,
Bosboom
,
D.
,
Scheenen
,
T. W.
,
Misra
,
S.
, and
Fütterer
,
J. J.
,
2012
, “
Evaluation of a Robotic Technique for Transrectal MRI-Guided Prostate Biopsies
,”
Eur. Radiol.
,
22
(
2
), pp.
476
483
.10.1007/s00330-011-2259-3
4.
Webster
,
R. J.
,
Kim
,
J. S.
,
Cowan
,
N. J.
,
Chirikjian
,
G. S.
, and
Okamura
,
A. M.
,
2006
, “
Nonholonomic Modeling of Needle Steering
,”
Int. J. Rob. Res.
,
25
(
5–6
), pp.
509
525
.10.1177/0278364906065388
5.
DiMaio
,
S. P.
, and
Salcudean
,
S. E.
,
2005
, “
Interactive Simulation of Needle Insertion Models
,”
IEEE Trans. Biomed. Eng.
,
52
(
7
), pp.
1167
1179
.10.1109/TBME.2005.847548
6.
Glozman
,
D.
, and
Shoham
,
M.
,
2007
, “
Image-Guided Robotic Flexible Needle Steering
,”
IEEE Trans. Rob.
,
23
(
3
), pp.
459
467
.10.1109/TRO.2007.898972
7.
Glozman
,
D.
, and
Shoham
,
M.
,
2004
, “
Flexible Needle Steering and Optimal Trajectory Planning for Percutaneous Therapies
,”
International Conference on Medical Image Computing and Computer-Assisted Intervention
, Saint-Malo, France, Sept. 26–29, Springer, Berlin, pp.
137
144
.10.1007/978-3-540-30136-3_18
8.
Khadem
,
M.
,
Rossa
,
C.
,
Usmani
,
N.
,
Sloboda
,
R. S.
, and
Tavakoli
,
M. A.
,
2016
, “
Two-Body Rigid/Flexible Model of Needle Steering Dynamics in Soft Tissue
,”
IEEE ASME Trans. Mechatron.
,
21
(
5
), pp.
2352
2364
.10.1109/TMECH.2016.2549505
9.
Misra
,
S.
,
Reed
,
K. B.
,
Schafer
,
B. W.
,
Ramesh
,
K. T.
, and
Okamura
,
A. M.
,
2010
, “
Mechanics of Flexible Needles Robotically Steered Through Soft Tissue
,”
Int. J. Rob. Res.
,
29
(
13
), pp.
1640
1660
.10.1177/0278364910369714
10.
Roesthuis
,
R. J.
,
Van Veen
,
Y. R. J.
,
Jahya
,
A.
, and
Misra
,
S.
,
2011
, “
Mechanics of Needle-Tissue Interaction
,”
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
, San Francisco, CA, Sept. 25–30, pp.
2557
2563
.10.1109/IROS.2011.6094969
11.
Wilson
,
E.
,
Ding
,
J.
,
Carignan
,
C.
,
Krishnan
,
K.
,
Avila
,
R.
,
Turner
,
W.
,
Stoianovici
,
D.
,
Yankelevitz
,
D.
,
Banovac
,
F.
, and
Cleary
,
K.
,
2010
, “
Evaluation of Nonholonomic Needle Steering Using a Robotic Needle Driver
,”
Proc. SPIE
,
7625
, p.
762523
.10.1117/12.844479
12.
Abayazid
,
M.
,
Kemp
,
M.
, and
Misra
,
S.
,
2013
, “
3D Flexible Needle Steering in Soft-Tissue Phantoms Using Fiber Bragg Grating Sensors
,”
2013 IEEE International Conference on Robotics and Automation
, Karlsruhe, Germany, May 6–10, pp.
5843
5849
.10.1109/ICRA.2013.6631418
13.
Moreira
,
P.
, and
Misra
,
S.
,
2015
, “
Biomechanics-Based Curvature Estimation for Ultrasound-Guided Flexible Needle Steering in Biological Tissues
,”
Ann. Biomed. Eng.
,
43
(
8
), pp.
1716
1726
.10.1007/s10439-014-1203-5
14.
Adebar
,
T. K.
,
Fletcher
,
A. E.
, and
Okamura
,
A. M.
,
2014
, “
3-D Ultrasound-Guided Robotic Needle Steering in Biological Tissue
,”
IEEE Trans. Biomed. Eng.
,
61
(
12
), pp.
2899
2910
.10.1109/TBME.2014.2334309
15.
Patel
,
N. A.
,
van Katwijk
,
T.
,
Li
,
G.
,
Moreira
,
P.
,
Shang
,
W.
,
Misra
,
S.
, and
Fischer
,
G. S.
,
2015
, “
Closed-Loop Asymmetric-Tip Needle Steering Under Continuous Intraoperative MRI Guidance
,” 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (
EMBC
), Milan, Italy, Aug. 25–29, pp.
4869
4874
.10.1109/EMBC.2015.7319484
16.
Khadem
,
M.
,
Rossa
,
C.
,
Usmani
,
N.
,
Sloboda
,
R. S.
, and
Tavakoli
,
M.
,
2017
, “
Semi-Automated Needle Steering in Biological Tissue Using an Ultrasound-Based Deflection Predictor
,”
J. Bioeng.
,
45
(
4
), pp.
924
938
.10.1007/s10439-016-1736-x
17.
Reed
,
K.
,
Majewicz
,
A.
,
Kallem
,
V.
,
Alterovitz
,
R.
,
Goldberg
,
K.
,
Cowan
,
N. J.
, and
Okamura
,
A. M.
,
2011
, “
Robot-Assisted Needle Steering
,”
IEEE Rob. Autom. Mag.
,
18
(
4
), pp.
35
46
.10.1109/MRA.2011.942997
18.
Minhas
,
D. S.
,
Engh
,
J. A.
,
Fenske
,
M. M.
, and
Riviere
,
C. N.
,
2007
, “
Modeling of Needle Steering Via Duty-Cycled Spinning
,”
2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, Lyon, France, Aug. 22–26, pp.
2756
2759
.10.1109/IEMBS.2007.4352899
19.
Hauser
,
K.
,
Alterovitz
,
R.
,
Chentanez
,
N.
,
Okamura
,
A.
, and
Goldberg
,
K.
,
2009
, “
Feedback Control for Steering Needles Through 3D Deformable Tissue Using Helical Paths
,”
Rob. Sci. Syst.
,
37
, epub.https://experts.illinois.edu/en/publications/feedback-control-forsteering-needles-through-3d-deformable-tissu
20.
Rucker
,
D. C.
,
Das
,
J.
,
Gilbert
,
H. B.
,
Swaney
,
P. J.
,
Miga
,
M. I.
,
Sarkar
,
N.
, and
Webster
,
R. J.
,
2013
, “
Sliding Mode Control of Steerable Needles
,”
IEEE Trans. Rob.
,
29
(
5
), pp.
1289
1299
.10.1109/TRO.2013.2271098
21.
Alterovitz
,
R.
,
Branicky
,
M.
, and
Goldberg
,
K.
,
2008
, “
Motion Planning Under Uncertainty for Image-Guided Medical Needle Steering
,”
Int. J. Rob. Res.
,
27
(
11–12
), pp.
1361
1374
.10.1177/0278364908097661
22.
Park
,
W.
,
Wang
,
Y.
, and
Chirikjian
,
G. S.
,
2010
, “
The Path-of-Probability Algorithm for Steering and Feedback Control of Flexible Needles
,”
Int. J. Rob. Res.
,
29
(
7
), pp.
813
830
.10.1177/0278364909357228
23.
Wang
,
J.
,
Li
,
X.
,
Zheng
,
J.
, and
Sun
,
D.
,
2014
, “
Dynamic Path Planning for Inserting a Steerable Needle Into a Soft Tissue
,”
IEEE ASME Trans. Mechatron.
,
19
(
2
), pp.
549
558
.10.1109/TMECH.2013.2250297
24.
Duindam
,
V.
,
Xu
,
J.
,
Alterovitz
,
R.
,
Sastry
,
S.
, and
Goldberg
,
K.
,
2010
, “
Three-Dimensional Motion Planning Algorithms for Steerable Needles Using Inverse Kinematics
,”
Int. J. Rob. Res.
,
29
(
7
), pp.
789
800
.10.1177/0278364909352202
25.
DiMaio
,
S. P.
, and
Salcudean
,
S. E.
,
2005
, “
Needle Steering and Motion Planning in Soft Tissues
,”
IEEE Trans. Biomed. Eng.
,
52
(
6
), pp.
965
974
.10.1109/TBME.2005.846734
26.
Xu
,
J.
,
Duindam
,
V.
,
Alterovitz
,
R.
, and
Goldberg
,
K.
,
2008
, “
Motion Planning for Steerable Needles in 3D Environments With Obstacles Using Rapidly-Exploring Random Trees and Backchaining
,”
2008 IEEE International Conference on Automation Science and Engineering
, Arlington, VA, Aug. 23–26, pp.
41
46
.10.1109/COASE.2008.4626486
27.
Patil
,
S.
, and
Alterovitz
,
R.
,
2010
, “
Interactive Motion Planning for Steerable Needles in 3D Environments With Obstacles
,”
2010 Third IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics
, Tokyo, Japan, Sept. 26–29, pp.
893
899
.10.1109/BIOROB.2010.5625965
28.
Hoelscher
,
J.
,
Fu
,
M.
,
Fried
,
I.
,
Emerson
,
M.
,
Ertop
,
T. E.
,
Rox
,
M.
,
Kuntz
,
A.
,
Akulian
,
J. A.
,
Webster
,
R. J.
, and
Alterovitz
,
R.
,
2021
, “
Backward Planning for a Multi-Stage Steerable Needle Lung Robot
,”
IEEE Rob. Autom. Lett.
,
6
(
2
), pp.
3987
3994
.10.1109/LRA.2021.3066962
29.
Fu
,
M.
,
Kuntz
,
A.
,
Webster
,
R. J.
, and
Alterovitz
,
R.
,
2018
, “
Safe Motion Planning for Steerable Needles Using Cost Maps Automatically Extracted From Pulmonary Images
,” 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Madrid, Spain, Oct. 1–5, pp.
4942
4949
.10.1109/IROS.2018.8593407
30.
Khatib
,
O.
,
1986
, “
Real-Time Obstacle Avoidance for Manipulators and Mobile Robots
,”
Autonomous Robot Vehicles
,
Springer-Verlag
,
New York
, pp.
396
404
.
31.
Roesthuis
,
R. J.
,
Abayazid
,
M.
, and
Misra
,
S.
,
2012
, “
Mechanics-Based Model for Predicting In-Plane Needle Deflection With Multiple Bends
,” 2012 Fourth IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (
BioRob
), Rome, Italy, June 24–28, pp.
69
74
.10.1109/BioRob.2012.6290829
32.
Jun
,
C.
,
Lim
,
S.
,
Petrisor
,
D.
,
Chirikjian
,
G.
,
Kim
,
J. S.
, and
Stoianovici
,
D.
,
2019
, “
A Simple Insertion Technique to Reduce the Bending of Thinbevel-Point Needles
,”
Minimally Invasive Ther. Allied Technol.
,
28
(
4
), pp.
199
205
.10.1080/13645706.2018.1505758
33.
Khadem
,
M.
,
Rossa
,
C.
,
Sloboda
,
R. S.
,
Usmani
,
N.
, and
Tavakoli
,
M.
,
2016
, “
Ultrasound-Guided Model Predictive Control of Needle Steering in Biological Tissue
,”
J. Med. Rob. Res.
,
1
(
1
), p.
1640007
.10.1142/S2424905X16400079
34.
Li
,
P.
,
Jiang
,
S.
,
Yu
,
Y.
,
Yang
,
J.
, and
Yang
,
Z.
,
2015
, “
Biomaterial Characteristics and Application of Silicone Rubber and PVA Hydrogels Mimicked in Organ Groups for Prostate Brachytherapy
,”
J. Mech. Behav. Biomed.
,
49
, pp.
220
234
.10.1016/j.jmbbm.2015.05.012
35.
DiMaio
,
S. P.
, and
Salcudean
,
S. E.
,
2003
, “
Needle Insertion Modeling and Simulation
,”
IEEE Trans. Rob. Autom.
,
19
(
5
), pp.
864
875
.10.1109/TRA.2003.817044
36.
Gruber-Rouh
,
T.
,
Lee
,
C.
,
Bolck
,
J.
,
Naguib
,
N. N.
,
Schulz
,
B.
,
Eichler
,
K.
,
Aschenbach
,
R.
,
Wichmann
,
J. L.
,
Vogl
,
T. J.
, and
Zangos
,
S.
,
2015
, “
Intervention Planning Using a Laser Navigation System for CT-Guided Interventions: A Phantom and Patient Study
,”
Korean J. Radiol.
,
16
(
4
), pp.
729
735
.10.3348/kjr.2015.16.4.729
You do not currently have access to this content.