Abstract

In this paper, a symmetric 3-UPU (U and P represent universal and prismatic joints, individually) parallel mechanism and its variant mechanism under different geometric and assembly conditions are analyzed. Both have two rotational and one translational (2R1T) DOFs and do not involve any parasitic motion. First, the kinematic performance of the mechanisms is discussed based on the motion/force transmission index and constraint index. Then, the singularity of the mechanism is analyzed systematically based on the local performance atlases, performance curves, and the screw theory. Finally, the global design indices are determined in accordance with the local performance indices in consideration of the motion/force transmissibility and constrainability to achieve the dimensional optimization of the 2R1T 3-UPU parallel mechanism.

References

1.
Chen
,
X.
,
Liu
,
X. J.
,
Xie
,
F.
, and
Sun
,
T.
,
2014
, “
A Comparison Study on Motion/Force Transmissibility of Two Typical 3-DOF Parallel Manipulators: The Sprint Z3 and A3 Tool Heads
,”
Int. J. Adv. Robot. Syst.
,
11
(
1
), pp.
19
37
.
2.
Pouliot
,
N. A.
,
Gosselin
,
C. M.
, and
Nahon
,
M. A.
,
1998
, “
Motion Simulation Capabilities of Three-Degree-of-Freedom Flight Simulators
,”
J. Aircr.
,
35
(
1
), pp.
9
17
.
3.
Bi
,
Z. M.
, and
Jin
,
Y.
,
2011
, “
Kinematic Modeling of Exechon Parallel Kinematic Machine
,”
Robot. Comput.-Integr. Manuf.
,
27
(
1
), pp.
186
193
.
4.
Hu
,
B.
,
2014
, “
Complete Kinematics of a Serial–Parallel Manipulator Formed by Two Tricept Parallel Manipulators Connected in Serials
,”
Nonlinear Dyn.
,
78
(
4
), pp.
2685
2698
.
5.
Liu
,
D. J.
,
Ai
,
Q. H.
,
Zhou
,
W.
, and
Wang
,
J. L.
,
2004
, “
Virtual Prototyping for a Parallel-Link Coordinate Measuring Machine
,”
Proc. Inst. Mech. Eng. B: J. Eng. Manuf.
,
218
(
9
), pp.
1125
1136
.
6.
Di Gregorio
,
R.
, and
Parenti Castelli
,
V.
,
2002
, “
Mobility Analysis of the 3UPU Parallel Mechanism Assembled for a Pure Translational Motion
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
259
264
.
7.
Bhutani
,
G.
, and
Dwarakanath
,
T. A.
,
2014
, “
Practical Feasibility of a High-Precision 3-UPU Parallel Mechanism
,”
Robotica
,
32
(
3
), pp.
341
355
.
8.
Xiangzhou
,
Z.
,
Yougao
,
L.
, and
Hongzan
,
B.
,
2007
, “
Inverse Dynamics of 3-UPU Parallel Mechanism with Pure Rotation Based on D'Alembert Principle
,”
Proceedings of International Conference on Mechatronics & Automation
,
Harbin, China
,
Aug. 5–8
, IEEE, pp.
2842
2847
.
9.
Di Gregorio
,
R.
, and
Parenti Castelli
,
V.
,
1998
,
Advances in Robot Kinematics: Analysis and Control
,
J.
Lenarcic
, and
M. L.
Husty
, eds.,
Springer
,
Dordrecht
, pp.
49
58
.
10.
Gregorio
,
R. D.
,
2004
, “
Statics and Singularity Loci of the 3-UPU Wrist
,”
IEEE Trans. Robot.
,
20
(
4
), pp.
630
635
.
11.
Di Gregorio
,
R.
,
2003
, “
Kinematics of the 3UPU Wrist
,”
Mech. Mach. Theory
,
38
(
3
), pp.
253
263
.
12.
Shafiee-Ashtiani
,
M.
,
Yousefi-Koma
,
A.
,
Iravanimanesh
,
S.
, and
Bashardoust
,
A. S.
,
2016
, “
Kinematic Analysis of a 3-UPU Parallel Robot Using the Ostrowski-Homotopy Continuation
,”
Proceedings of 2016 24th Iranian Conference on Electrical Engineering (ICEE)
,
Shiraz, Iran
,
May 10–12
, pp.
1306
1311
.
13.
Di Gregorio
,
R.
, and
Parenti Castelli
,
V.
,
1999
, “
Influence of the Geometric Parameters of the 3-UPU Parallel Manipulator on the Singularity Loci
,”
Proceedings of the International Workshop on Parallel Kinematics Machines
,
Milan, Italy
,
Nov. 30
, pp.
202
207
.
14.
Isaksson
,
M.
,
Eriksson
,
A.
, and
Nahavandi
,
S.
,
2014
, “
Analysis of the Inverse Kinematics Problem for 3-DOF Axis-Symmetric Parallel Manipulators With Parasitic Motion
,”
Proceedings of 2014 IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
,
May 31–June 7
, pp.
5736
5743
.
15.
Zhao
,
H.
,
Bi
,
S.
, and
Yu
,
J.
,
2012
, “
A Novel Compliant Linear-Motion Mechanism Based on Parasitic Motion Compensation
,”
Mech. Mach. Theory
,
50
(
1
), pp.
15
28
.
16.
Xu
,
Y.
,
Zhou
,
S.
,
Yao
,
J.
, and
Zhao
,
Y.
,
2014
, “
Rotational Axes Analysis of the 2-RPU/ SPR 2R1T Parallel Mechanism
,”
Mech. Mach. Sci.
,
22
(
1
), pp.
113
121
.
17.
Carretero
,
J.
,
Podhorodeski
,
R.
,
Nahon
,
M.
, and
Gosselin
,
C. M.
,
2000
, “
Kinematic Analysis and Optimization of a New Three Degree-of-Freedom Spatial Parallel Manipulator
,”
ASME J. Mech. Des.
,
122
(
1
), pp.
17
24
.
18.
Isaksson
,
M.
,
Eriksson
,
A.
, and
Nahavandi
,
S.
,
2014
, “
Analysis of the Inverse Kinematics Problem for 3-DOF Axis-Symmetric Parallel Manipulators With Parasitic Motion
,”
Proceedings of Proceedings—IEEE International Conference on Robotics and Automation
,
Hong Kong, China
,
May 31–June 7
, pp.
5736
5743
.
19.
Liu
,
X. J.
,
Wang
,
L. P.
,
Xie
,
F.
, and
Bonev
,
I. A.
,
2010
, “
Design of a Three-Axis Articulated Tool Head With Parallel Kinematics Achieving Desired Motion/Force Transmission Characteristics
,”
ASME J. Manuf. Sci. Eng.
,
132
(
2
), p.
021009
.
20.
Nayak
,
A.
,
Caro
,
S.
, and
Wenger
,
P.
,
2018
, “
Comparison of 3-[PP]S Parallel Manipulators Based on Their Singularity Free Orientation Workspace, Parasitic Motions and Complexity
,”
Mech. Mach. Theory
,
129
(
1
), pp.
193
315
.
21.
Li
,
Q.
, and
Hervé
,
J.
,
2010
, “
1T2R Parallel Mechanisms Without Parasitic Motion
,”
IEEE Trans. Robot.
,
26
(
3
), pp.
401
410
.
22.
Li
,
Q.
,
Chen
,
Z.
,
Chen
,
Q.
, and
Hu
,
X.
,
2011
, “
Parasitic Motion Comparison of 3-PRS Parallel Mechanism With Different Limb Arrangements
,”
Robot. Comput.-Integr. Manuf.
,
27
(
2
), pp.
389
396
.
23.
Chen
,
Z.
,
Cheng
,
D.
,
Zhang
,
Y.
, and
Zhang
,
J.
,
2017
, “
Influence Coefficients and Singularity Analysis of a Novel 3-UPU Parallel Mechanism
,”
Proceedings of ASME International Design Engineering Technical Conferences & Computers & Information in Engineering Conference
,
Cleveland, OH
,
Aug. 6–9
,
p. V05AT08A054
.
24.
Zhao
,
C.
,
Chen
,
Z.
,
Song
,
J.
,
Wang
,
X.
, and
Ding
,
H.
,
2020
, “
Deformation Analysis of a Novel 3-DOF Parallel Spindle Head in Gravitational Field
,”
Mech. Mach. Theory
,
154
(
1
), p.
104036
.
25.
Gosselin
,
C.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains, Robotics and Automation
,”
IEEE Trans. Robot.
,
6
(
3
), pp.
281
290
.
26.
Pendar
,
H.
,
Mahnama
,
M.
, and
Zohoor
,
H.
,
2011
, “
Singularity Analysis of Parallel Manipulators Using Constraint Plane Method
,”
Mech. Mach. Theory
,
46
(
1
), pp.
33
43
.
27.
Huang
,
Z.
,
Chen
,
L. H.
, and
Li
,
Y. W.
,
2003
, “
The Singularity Principle and Property of Stewart Parallel Manipulator
,”
J. Robot. Syst.
,
20
(
4
), pp.
163
176
.
28.
Huang
,
Z.
,
Zhao
,
Y. S.
,
Wang
,
J.
, and
Yu
,
J.
,
1999
, “
Kinematic Principle and Geometrical Condition of General-Linear-Complex Special Configuration of Parallel Manipulators
,”
Mech. Mach. Theory
,
34
(
8
), pp.
1171
1186
.
29.
Alici
,
G.
, and
Shirinzadeh
,
B.
,
2004
, “
Topology Optimisation and Singularity Analysis of a 3-SPS Parallel Manipulator With a Passive Constraining Spherical Joint
,”
Mech. Mach. Theory
,
39
(
2
), pp.
215
235
.
30.
Zhao
,
J. S.
,
Feng
,
Z. J.
,
Zhou
,
K.
, and
Dong
,
J. X.
,
2005
, “
Analysis of the Singularity of Spatial Parallel Manipulator With Terminal Constraints
,”
Mech. Mach. Theory
,
40
(
3
), pp.
275
284
.
31.
Simaan
,
N.
, and
Shoham
,
M.
,
2001
, “
Singularity Analysis of a Class of Composite Serial in-Parallel Robots
,”
IEEE Trans. Rob. Autom.
,
17
(
3
), pp.
301
311
.
32.
Bonev
,
I.
,
Zlatanov
,
D.
, and
Gosselin
,
C.
,
2003
, “
Singularity Analysis of 3-DOF Planar Parallel Mechanisms via Screw Theory
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
573
581
.
33.
Sefrioui
,
J.
, and
Gosselin
,
C. M.
,
1995
, “
On the Quadratic Nature of the Singularity Curves of Planar Three-Degree-of-Freedom Parallel Manipulators
,”
Mech. Mach. Theory
,
30
(
4
), pp.
533
551
.
34.
Paul
,
R.
, and
Stevenson
,
C.
,
1983
, “
Kinematics of Robot Wrists
,”
Int. J. Robot. Res.
,
2
(
1
), pp.
31
38
.
35.
Yoshikawa
,
T.
,
1985
, “
Manipulability of Robotic Mechanisms
,”
Int. J. Robot. Res.
,
4
(
2
), pp.
3
9
.
36.
Gosselin
,
C.
, and
Angeles
,
J.
,
1989
, “
The Optimum Kinematic Design of a Spherical Three-Degree-of-Freedom Parallel Manipulator
,”
ASME J. Mech. Trans. Autom. Des.
,
111
(
2
), pp.
202
207
.
37.
Gosselin
,
C.
, and
Angeles
,
J.
,
1991
, “
A Global Performance Index for the Kinematic Optimization of Robotic Manipulators
,”
ASME J. Mech. Des.
,
113
(
3
), pp.
220
226
.
38.
Liu
,
H. T.
,
Huang
,
T.
,
Zhao
,
X. M.
, and
Chetwynd
,
D. G.
,
2007
, “
Optimal Design of the TriVariant Robot to Achieve a Nearly Axial Symmetry of Kinematic Performance
,”
Mech. Mach. Theory
,
42
(
12
), pp.
1643
1652
.
39.
Doty
,
K.
,
Melchiorri
,
C.
,
Schwartz
,
E. M.
, and
Bonivento
,
C.
,
1995
, “
Robot Manipulability
,”
IEEE Trans. Rob. Autom.
,
11
(
3
), pp.
462
468
.
40.
Lipkin
,
H.
, and
Duffy
,
J.
,
1988
, “
Hybrid Twist and Wrench Control for a Robotic Manipulator
,”
Trans. Autom. Des.
,
110
(
2
), pp.
138
144
.
41.
Ma
,
O.
, and
Angeles
,
J.
,
1991
, “
Optimum Architecture Design of Platform Manipulators
,”
Proceedings of International Conference on Advanced Robotics
,
Pisa, Italy
,
June 19–22
, pp.
1130
1135
.
42.
Angeles
,
J.
,
2006
, “
Is There a Characteristic Length of a Rigid-Body Displacement
,”
Mech. Mach. Theory
,
41
(
8
), pp.
884
896
.
43.
Angeles
,
J.
,
2006
, “
The Kinetostatic Optimization of Robotic Manipulators: The Inverse and the Direct Problems
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
168
178
.
44.
Pond
,
G.
, and
Carretero
,
J.
,
2006
, “
Formulating Jacobian Matrices for the Dexterity Analysis of Parallel Manipulators
,”
Mech. Mach. Theory
,
41
(
12
), pp.
1505
1519
.
45.
Pond
,
G.
, and
Carretero
,
J.
,
2007
, “
Quantitative Dexterous Workspace Comparison of Parallel Manipulators
,”
Mech. Mach. Theory
,
42
(
10
), pp.
1388
1400
.
46.
Kelaiaia
,
R.
,
Company
,
O.
, and
Zaatri
,
A.
,
2012
, “
Multiobjective Optimization of a Linear Delta Parallel Robot
,”
Mech. Mach. Theory
,
50
(
1
), pp.
159
178
.
47.
Liu
,
X. J.
, and
Wang
,
J.
,
2007
, “
A New Methodology for Optimal Kinematic Design of Parallel Mechanisms
,”
Mech. Mach. Theory
,
42
(
9
), pp.
1210
1224
.
48.
Zhao
,
C.
,
Chen
,
Z.
,
Li
,
Y. W.
, and
Huang
,
Z.
,
2019
, “
Motion Characteristics Analysis of a Novel 2R1T 3-UPU Parallel Mechanism
,”
ASME J. Mech. Des.
,
142
(
1
), p.
012302
.
49.
Meng
,
Q.
,
Xie
,
F.
,
Liu
,
X. J.
, and
Takeda
,
Y.
,
2020
, “
Screw Theory-Based Motion/Force Transmissibility Analysis of High-Speed Parallel Robots With Articulated Platforms
,”
ASME J. Mech. Rob.
,
12
(
4
), pp.
1
15
.
50.
Marlow
,
K.
,
Isaksson
,
M.
,
Dai
,
J. S.
, and
Nahavandi
,
S.
,
2016
, “
Motion/Force Transmission Analysis of Planar Parallel Mechanisms With Closed-Loop Subchains
,”
ASME J. Mech. Rob.
,
138
(
6
), p.
062302
.
51.
Liu
,
X. J.
,
Chen
,
X.
, and
Nahon
,
M.
,
2014
, “
Motion/Force Constrainability Analysis of Lower-Mobility Parallel Manipulators
,”
ASME J. Mech. Rob.
,
6
(
3
), p.
031006
.
52.
Hu
,
B.
,
Shi
,
D.
,
Xie
,
T.
, and
Hu
,
B.
,
2020
, “
Kinematically Identical Manipulators Derivation for the 2-RPU + UPR Parallel Manipulator and Their Constraint Performance Comparison
,”
ASME J. Mech. Rob.
,
12
(
6
), p.
061011
.
53.
Xu
,
L.
,
Li
,
Q.
,
Zhang
,
N.
, and
Chen
,
Q.
,
2017
, “
Mobility, Kinematic Analysis, and Dimensional Optimization of New Three-Degrees-of-Freedom Parallel Manipulator With Actuation Redundancy
,”
ASME J. Mech. Rob.
,
9
(
4
), p.
041008
.
54.
Briot
,
S.
, and
Bonev
,
I. A.
,
2008
, “
Singularity Analysis of Zero-Torsion Parallel Mechanisms
,”
Proceedings of 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Nice, France
,
Sept. 22–26
, pp.
1952
1957
.
55.
Wang
,
L.
,
Xu
,
H.
, and
Guan
,
L.
,
2017
, “
Optimal Design of a 3-PUU Parallel Mechanism With 2R1T DOFs
,”
Mech. Mach. Theory
,
114
(
4
), pp.
190
203
.
56.
Zlatanov
,
D.
,
Bonev
,
I.
, and
Gosselin
,
C.
,
2002
, “
Constraint Singularities as Configuration Space Singularities
,”
Proceedings of 8th International Symposium on Advances in Robot Kinematics
,
Caldes de Malavella, Spain
,
June 24–28
, pp.
183
192
.
You do not currently have access to this content.