This paper presents a method for fabricating millimeter-scale robotic components for minimally invasive surgery. Photolithographic patterning is used to create a framework of carbon nanotubes (CNTs) that can be infiltrated with a variety of materials, depending on the desired material properties. For the examples shown in this paper, amorphous carbon is used as the infiltration material. The planar frameworks are then stacked to create the 3D device. The detail and precision are affected by large changes in cross section in the direction of stacking. Methods for improving the definition of the 3D object due to changing cross section are discussed. The process is demonstrated in a two-degree-of-freedom (2DOF) wrist mechanism and a 2DOF surgical gripping mechanism, which have the potential of decreasing the size of future minimally invasive surgical instruments.

References

1.
Senapati
,
S.
, and
Advincula
,
A. P.
,
2007
, “
Surgical Techniques: Robot-Assisted Laparoscopic Myomectomy With the Da Vinci Surgical System
,”
J. Rob. Surg.
,
1
(
1
), pp.
69
74
.10.1007/s11701-007-0014-1
2.
Yee
,
D. S.
,
Shanberg
,
A. M.
,
Duel
,
B. P.
,
Rodriguez
,
E.
,
Eichel
,
L.
, and
Rajpoot
,
D.
,
2006
, “
Initial Comparison of Robotic-Assisted Laparoscopic Versus Open Pyeloplasty in Children
,”
Urology
,
67
(
3
), pp.
599
602
.10.1016/j.urology.2005.09.021
3.
Pallav
,
K.
,
Han
,
P.
,
Ramkumar
,
J.
, and
Ehmann
,
K. F.
,
2013
, “
Comparative Assessment of the Laser Induced Plasma Micromachining and the Micro-EDM Processes
,”
ASME J. Manuf. Sci. Eng.
,
136
(
1
), p.
011001
.10.1115/1.4025391
4.
Spearing
,
S.
,
2000
, “
Materials Issues in Microelectromechanical Systems (MEMS)
,”
Acta Mater.
,
48
(
1
), pp.
179
196
.10.1016/S1359-6454(99)00294-3
5.
Hoople
,
G. D.
,
Rolfe
,
D. A.
,
McKinstry
,
K. C.
,
Noble
,
J. R.
,
Dornfeld
,
D. A.
, and
Pisano
,
A. P.
,
2014
, “
Comparison of Microscale Rapid Prototyping Techniques
,”
J. Micro Nano Manuf.
,
2
(
3
), p.
034502
.10.1115/1.4027810
6.
Jabbari
,
E.
,
Rocheleau
,
D. N.
,
Xu
,
W.
, and
He
,
X.
,
2007
, “
Fabrication of Biomimetic Scaffolds With Well-Defined Pore Geometry by Fused Deposition Modeling
,”
ASME
Paper No. MSEC2007-31011.10.1115/MSEC2007-31011
7.
Feygin
,
M.
, and
Hsieh
,
B.
,
1991
, “
Laminated Object Manufacturing: A Simpler Process
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
, Aug. 12–14, pp. 123–130.
8.
Kumar
,
A. V.
, and
Dutta
,
A.
,
2004
, “
Electrophotographic Layered Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
126
(
3
), pp.
571
576
.10.1115/1.1765146
9.
Chen, R. T., Kruglick, E. J., Bang, C. A., Smalley, D. R., & Lembrikov, P. B.
,
2014
, “
Methods of Creating Probe Structures From a Plurality of Planar Layers
,” U.S. Patent No. 8,723,543.
10.
Waurzyniak
,
P.
,
2013
, “
Micro Manufacturing Keeps Shrinking the Envelope
,” Advanced Manufacturing Media, Dearborn, MI, http://www.sme.org/MEMagazine/Article.aspx?id=69873
11.
Felton
,
S.
,
Tolley
,
M.
,
Demaine
,
E.
,
Rus
,
D.
, and
Wood
,
R.
,
2014
, “
A Method for Building Self-Folding Machines
,”
Science
,
345
(
6197
), pp.
644
646
.10.1126/science.1252610
12.
Sreetharan
,
P. S.
,
Whitney
,
J. P.
,
Strauss
,
M. D.
, and
Wood
,
R. J.
,
2012
, “
Monolithic Fabrication of Millimeter-Scale Machines
,”
J. Micromech. Microeng.
,
22
(
5
), p.
055027
.10.1088/0960-1317/22/5/055027
13.
La Fontaine
,
B.
,
2010
, “
Lasers and Moore's Law
,”
SPIE
Professional, October, p.
20
.10.1117/2.4201010.09
14.
Lin
,
B.
,
2009
,
Optical Lithography
,
SPIE Press
,
Bellingham, WA
.
15.
Toone
,
N. C.
,
Fazio
,
W. F.
,
Lund
,
J. M.
,
Teichert
,
G. H.
,
Jensen
,
B. D.
,
Burnett
,
S. H.
, and
Howell
,
L. L.
,
2014
, “
Investigation of Unique Carbon Nanotube Cell Restraint Compliant Mechanisms
,”
Mech. Based Des. Struct. Mach.
,
42
(
3
), pp.
343
354
.10.1080/15397734.2014.908298
16.
Hutchison
,
D.
,
Morrill
,
N.
,
Aten
,
Q.
,
Turner
,
B. W.
,
Jensen
,
B. D.
,
Howell
,
L.
,
Vanfleet
,
R.
, and
Davis
,
R.
,
2010
, “
Carbon Nanotubes as a Framework for High-Aspect-Ratio MEMS Fabrication
,”
J. Microelectromech. Syst.
,
19
(
1
), pp.
75
82
.10.1109/JMEMS.2009.2035639
17.
Hanna
,
B.
,
Fazio
,
W.
,
Tanner
,
J.
,
Lund
,
J.
,
Wood
,
T.
,
Davis
,
R.
,
Vanfleet
,
R.
, and
Jensen
,
B.
,
2014
, “
Mechanical Property Measurement of Carbon Infiltrated Carbon Nanotube Structures for Compliant Micromechanisms
,”
J. Microelectromech. Syst.
,
23
(
6
), pp.
1330
1339
.10.1109/JMEMS.2014.2312847
18.
Jones
,
K.
,
Jensen
,
B. D.
, and
Bowden
,
A.
,
2013
, “
Fabrication and Testing of Planar Stent Mesh Designs Using Carbon-Infiltrated Carbon Nanotubes
,”
ASME J. Nanotechnol. Eng. Med.
,
4
(
2
), p.
020903
.10.1115/1.4025598
19.
Halverson
,
P. A.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2010
, “
Tension-Based Multi-Stable Compliant Rolling-Contact Elements
,”
Mech. Mach. Theory
,
45
(
2
), pp.
147
156
.10.1016/j.mechmachtheory.2008.11.013
20.
Moulton
,
K.
,
Morrill
,
N.
,
Konneker
,
A.
,
Jensen
,
B.
,
Vanfleet
,
R.
,
Allred
,
D.
, and
Davis
,
R.
,
2012
, “
Effect of Iron Catalyst Thickness on Vertically Aligned Carbon Nanotube Forest Straightness for CNT-MEMS
,”
J. Micromech. Microeng.
,
22
(
5
), p.
055004
.10.1088/0960-1317/22/5/055004
You do not currently have access to this content.