Graphical Abstract Figure

Polibot: an example of a passively suspended tracked robot; the robot operating in a vineyard

Graphical Abstract Figure

Polibot: an example of a passively suspended tracked robot; the robot operating in a vineyard

Close modal

Abstract

This article investigates the obstacle-climbing ability of a novel passively articulated robot, Polibot, which is compared to a standard tracked robot using a fixed-wheel configuration. Two test cases are analyzed: the traverse of a single obstacle and the navigation upward along a vertical surface. Both scenarios are analytically solved using a quasistatic Newton–Euler approach. The dynamic equilibrium of the system is also defined using an energetic approach, focusing on the energy loss from the wheel-ground slippage. Understanding the role played by the different energy components contributes to shedding light on the fundamental mechanisms underlying the negotiation of obstacles and highly challenging terrain, in general, by suspended tracked robots. Finally, experimental results are presented to validate the proposed approach in real-world conditions.

References

1.
Ugenti
,
A.
,
Vulpi
,
F.
,
Domínguez
,
R.
,
Cordes
,
F.
,
Milella
,
A.
, and
Reina
,
G.
,
2022
, “
On the Role of Feature and Signal Selection for Terrain Learning in Planetary Exploration Robots
,”
J. Field Rob.
,
39
(
4
), pp.
355
370
.
2.
Leanza
,
A.
,
Galati
,
R.
,
Ugenti
,
A.
,
Cavallo
,
E.
, and
Reina
,
G.
,
2023
, “
Where Am I Heading? A Robust Approach for Orientation Estimation of Autonomous Agricultural Robots
,”
Comput. Electron. Agric.
,
210
, p.
107888
.
3.
Choi
,
Y.
,
Jeong
,
K.
,
Seo
,
Y.
,
Cho
,
J.
,
Jung
,
S.
, and
Kim
,
S.
,
2008
, “
QuadTrack-II: A Remotely Operated Mobile Robot With Four Articulated Tracks
,”
IFAC Proc. Vols
,
41
(
2
), pp.
3017
3020
.
4.
Galati
,
R.
,
Mantriota
,
G.
, and
Reina
,
G.
,
2021
, “
Design and [Q5]Development of a Tracked Robot to Increase Bulk Density of Flax Fibers
,”
ASME J. Mech. Rob.
,
13
(
5
), p.
050903
.
5.
Demirjian
,
W.
,
Powelson
,
M.
, and
Canfield
,
S.
,
2020
, “
Design of Track-Type Climbing Robots Using Dry Adhesives and Compliant Suspension for Scalable Payloads
,”
ASME J. Mech. Rob.
,
12
(
3
), p.
031017
.
6.
Shafaei
,
S.
, and
Mousazadeh
,
H.
,
2023
, “
Experimental Comparison of Locomotion System Performance of Ground Mobile Robots in Agricultural Drawbar Works
,”
Smart Agric. Technol.
,
3
, p.
100131
.
7.
Wong
,
J.
, and
Huang
,
W.
,
2006
, “
Wheels vs. Tracks”—A Fundamental Evaluation From the Traction Perspective
,”
J. Terramech.
,
43
(
1
), pp.
27
42
.
8.
Bruzzone
,
L.
,
Nodehi
,
S. E.
, and
Fanghella
,
P.
,
2022
, “
Tracked Locomotion Systems for Ground Mobile Robots: A Review
,”
Machines
,
10
(
8
), p.
648
.
9.
Lewis
,
P. J.
,
Flann
,
N.
,
Torrie
,
M. R.
,
Poulson
,
E. A.
,
Petroff
,
T.
, and
Witus
,
G.
,
2005
, “Chaos, an Intelligent Ultra-Mobile SUGV: Combining the Mobility of Wheels, Tracks, and Legs,”
Unmanned Ground Vehicle Technology VII
, Vol.
5804
,
G. R.
Gerhart
,
C. M.
Shoemaker
,
D. W.
Gage
, eds.,
International Society for Optics and Photonics, SPIE
, pp.
427
438
.
10.
Yajima
,
R.
, and
Nagatani
,
K.
,
2021
, “Obstacle Climbing of Tracked Robot for Unfixed Cylindrical Obstacle Using Sub-Tracks,”
Field and Service Robotics
,
G.
Ishigami
,
K.
Yoshida
, eds.,
Springer
,
Singapore
, pp.
189
203
.
11.
Brunner
,
M.
,
Fiolka
,
T.
,
Schulz
,
D.
, and
Schlick
,
C. M.
,
2015
, “
Design and Comparative Evaluation of An Iterative Contact Point Estimation Method for Static Stability Estimation of Mobile Actively Reconfigurable Robots
,”
Rob. Auton. Syst.
,
63
(
1
), pp.
89
107
.
12.
Szpaczyńska
,
D.
,
Łopatka
,
M.
, and
Krogul
,
P.
,
2024
, “
The Running Gear Construction Impact on Overcoming Obstacles by Light High-Mobility Tracked Ugv
,”
J. Terramech.
,
112
, pp.
1
17
.
13.
Kim
,
J.
,
Kim
,
J.
, and
Lee
,
D.
,
2018
, “
Mobile Robot With Passively Articulated Driving Tracks for High Terrainability and Maneuverability on Unstructured Rough Terrain: Design, Analysis, and Performance Evaluation
,”
J. Mech. Sci. Technol.
,
32
(
11
), pp.
5389
5400
.
14.
Sun
,
B.
, and
Jing
,
X.
,
2017
, “
A Tracked Robot With Novel Bio-Inspired Passive “Legs”
,”
Rob. Biomimetics
,
4
(
1
), pp.
1
14
.
15.
Benamar
,
F.
, and
Grand
,
C.
,
2013
, “
Quasi-Static Motion Simulation and Slip Prediction of Articulated Planetary Rovers Using a Kinematic Approach
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021002
.
16.
Ugenti
,
A.
,
Galati
,
R.
,
Mantriota
,
G.
, and
Reina
,
G.
,
2023
, “
Analysis of an All-Terrain Tracked Robot With Innovative Suspension System
,”
Mech. Mach. Theory
,
182
, p.
105237
.
17.
Grazioso
,
A.
,
Ugenti
,
A.
,
Galati
,
R.
,
Mantriota
,
G.
, and
Reina
,
G.
,
2023
, “
Modeling and Validation of a Novel Tracked Robot via Multibody Dynamics
,”
Robotica
,
41
(
10
), pp.
3211
3232
.
18.
Reina
,
G.
, and
Foglia
,
M.
,
2013
, “
On the Mobility of All-Terrain Rovers
,”
Ind. Rob. Int. J.
,
40
(
2
), pp.
121
131
.
19.
Wong
,
J. Y.
,
2008
,
Theory of Ground Vehicles
,
John Wiley & Sons
.
20.
Reina
,
G.
, and
Galati
,
R.
,
2016
, “
Slip-Based Terrain Estimation With a Skid-Steer Vehicle
,”
Veh. Syst. Dyn.
,
54
(
10
), pp.
1384
1404
.
You do not currently have access to this content.