Abstract

In response to elderly individuals and stroke patients with weakened lower limb muscle strength, this study proposes a multi-joint soft lower limb assistive exoskeleton designed to assist hip and knee joint flexion and extension during human walking. To achieve smooth control of the flexible exoskeleton, a hardware control system based on STM32 is constructed. The study establishes the theoretical dynamics model and motion characteristic equations for the soft exoskeleton. To minimize assistive errors, a control strategy is designed based on the proportional derivative iterative learning control methods, and control algorithm simulations are performed. For precise assistance of the soft exoskeleton, a mean prediction method is employed to forecast the gait cycle of the human body. To validate the correctness of the dynamic model and the practicality of the soft exoskeleton, tracking experiments with a dummy and walking assistance experiments with human subjects are conducted separately. The dummy tracking experiment results indicate that the percentage errors of peak assistive values for hip and knee joint flexion are 4.77% and 5.81%, respectively, while for extension, the percentage errors are 8.94% and 9.13%. The human walking assistance experiment results show that the peak assistive values provided by the soft exoskeleton for hip joint flexion and extension reach 152.46 N and 150.26 N, respectively, while for knee joint flexion and extension, the peak assistive values are 107.64 N and 106.13 N, respectively.

References

1.
Wehner
,
M.
,
Quinlivan
,
B.
,
Aubin
,
P. M.
, and
Martinez-Villalpando
,
E.
,
2013
, “
A Lightweight Soft Exosuit for Gait Assistance
,”
IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany, May 6–10, pp. 3362–3369
.
2.
Jin
,
S.
,
Iwamoto
,
N.
,
Hashimoto
,
K.
, and
Yamamoto
,
M.
,
2016
, “
Experimental Evaluation of Energy Efficiency for a Soft Wearable Robotic Suit
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
25
(
8
), pp.
1192
1201
.
3.
Di Natali
,
C.
,
Poliero
,
T.
,
Sposito
,
M.
,
Graf
,
E.
,
Bauer
,
C.
,
Pauli
,
C.
,
Bottenberg
,
E.
, et al
,
2019
, “
Design and Evaluation of a Soft Assistive Lower Limb Exoskeleton
,”
Robotica
,
37
(
12
), pp.
2014
2034
.
4.
Asbeck
,
A. T.
,
Schmidt
,
K.
, and
Walsh
,
C. J.
,
2015
, “
Soft Exosuit for Hip Assistance
,”
Rob. Auton. Syst.
,
73
(
11
), pp.
102
110
.
5.
Awad
,
L. N.
,
Kudzia
,
P.
,
Revi
,
D. A.
,
Ellis
,
T. D.
, and
Walsh
,
C. J.
,
2020
, “
Walking Faster and Farther With a Soft Robotic Exosuit: Implications for Post-Stroke Gait Assistance and Rehabilitation
,”
IEEE Open J. Eng. Med. Biol.
,
1
(
4
), pp.
108
115
.
6.
Miller-Jackson
,
T. M.
,
Natividad
,
R. F.
,
Lim
,
D. Y. L.
,
Hernandez-Barraza
,
L.
,
Ambrose
,
J. W.
, and
Yeow
,
R. C.-H
,
2022
, “
A Wearable Soft Robotic Exoskeleton for Hip Flexion Rehabilitation
,”
Front. Rob. AI
,
9
(
4
), p.
835237
.
7.
Cao
,
W.
,
Chen
,
C.
,
Hu
,
H.
,
Fang
,
K.
, and
Wu
,
X.
,
2020
, “
Effect of Hip Assistance Modes on Metabolic Cost of Walking With a Soft Exoskeleton
,”
IEEE Trans. Autom. Sci. Eng.
,
18
(
2
), pp.
426
436
.
8.
Chen
,
L.
,
Chen
,
C.
,
Ye
,
X.
,
Wang
,
Z.
,
Liu
,
Y.
,
Cao
,
W.
,
Chen
,
S.
, and
Wu
,
X.
,
2022
, “
A Portable Waist-Loaded Soft Exosuit for Hip Flexion Assistance With Running
,”
Micromachines
,
13
(
2
), p.
157
.
9.
Chen
,
L.
,
Chen
,
C.
,
Wang
,
Z.
,
Ye
,
X.
,
Liu
,
Y.
, and
Wu
,
X.
2021
, “
A Novel Lightweight Wearable Soft Exosuit for Reducing the Metabolic Rate and Muscle Fatigue
,”
Biosensors
,
11
(
7
), p.
215
.
10.
Tricomi
,
E.
,
Lotti
,
N.
,
Missiroli
,
F.
,
Zhang
,
X.
,
Xiloyannis
,
M.
,
Muller
,
T.
,
Crea
,
S.
, et al
,
2021
, “
Underactuated Soft Hip Exosuit Based on Adaptive Oscillators to Assist Human Locomotion
,”
IEEE Rob. Autom. Lett.
,
7
(
2
), pp.
936
943
.
11.
Kim
,
J.
,
Quinlivan
,
B. T.
,
Deprey
,
L. A.
,
Arumukhom Revi
,
D.
,
Eckert-Erdheim
,
A.
,
Murphy
,
P.
,
Orzel
,
D.
, and
Walsh
,
C. J.
,
2022
, “
Reducing the Energy Cost of Walking With Low Assistance Levels Through Optimized Hip Flexion Assistance From a Soft Exosuit
,”
Sci. Rep.
,
12
(
1
), p.
11004
.
12.
Yang
,
H. D.
,
Cooper
,
M.
,
Eckert-Erdheim
,
A.
,
Orzel
,
D.
, and
Walsh
,
C. J.
2022
, “
A Soft Exosuit Assisting Hip Abduction for Knee Adduction Moment Reduction During Walking
,”
IEEE Rob. Autom. Lett.
,
7
(
3
), pp.
7439
7446
.
13.
Asbeck
,
A. T.
,
De Rossi
,
S. M.
,
Holt
,
K. G.
, and
Walsh
,
C. J.
,
2015
, “
A Biologically Inspired Soft Exosuit for Walking Assistance
,”
Int. J. Rob. Res.
,
34
(
6
), pp.
744
762
.
14.
Panizzolo
,
F. A.
,
Galiana
,
I.
,
Asbeck
,
A. T.
,
Siviy
,
C.
,
Schmidt
,
K.
,
Holt
,
K. G.
, and
Walsh
,
C. J.
2016
, “
A Biologically-Inspired Multi-Joint Soft Exosuit That Can Reduce the Energy Cost of Loaded Walking
,”
J. Neuroeng. Rehabil.
,
13
(
1
), pp.
1
14
.
15.
Ding
,
Y.
,
Galiana
,
I.
,
Asbeck
,
A.
, and
Quinlivan
,
B.
,
2014
, “
Multi-joint Actuation Platform for Lower Extremity Soft Exosuits
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China, May 31-June 7, pp. 1327–1334
.
16.
Ding
,
Y.
,
Galiana
,
I.
,
Asbeck
,
A. T.
,
De Rossi
,
S. M. M.
,
Bae
,
J.
,
Santos
,
T. R. T.
,
de Araujo
,
V. L.
,
Lee
,
S.
,
Holt
,
K. G.
, and
Walsh
,
C.
,
2016
, “
Biomechanical and Physiological Evaluation of Multi-joint Assistance With Soft Exosuits
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
25
(
2
), pp.
119
130
.
17.
Ding
,
Y.
,
Kim
,
M.
,
Kuindersma
,
S.
, and
Walsh
,
C. J.
,
2018
, “
Human-in-the-Loop Optimization of Hip Assistance With a Soft Exosuit During Walking
,”
Sci. Rob.
,
3
(
15
), p.
eaar5438
.
18.
Chen
,
C.
,
Zhang
,
Y.
,
Li
,
Y.
,
Wang
,
Z.
,
Liu
,
Y.
,
Cao
,
W.
, and
Wu
,
X.
2020
, “
Iterative Learning Control for a Soft Exoskeleton With Hip and Knee Joint Assistance
,”
Sensors
,
20
(
15
), p.
4333
.
19.
Ding
,
Y.
,
Galiana
,
I.
,
Siviy
,
C.
, and
Panizzolo
,
F. A.
,
2016
, “
IMU-Based Iterative Control for Hip Extension Assistance With a Soft Exosuit
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden, May 16–21, pp. 3501–3508
.
20.
Xu
,
J. X.
,
2011
, “
A Survey on Iterative Learning Control for Nonlinear Systems
,”
Int. J. Control
,
84
(
7
), pp.
1275
1294
.
21.
Jang
,
T. J.
,
Choi
,
C. H.
, and
Ahn
,
H. S.
,
1995
, “
Iterative Learning Control in Feedback Systems
,”
Automatica
,
31
(
2
), pp.
243
248
.
You do not currently have access to this content.