Abstract

We present a position and orientation controller for a hybrid rigid-soft manipulator arm where the soft arm is extruded from a two degrees-of-freedom rigid link. Our approach involves learning the dynamics of the hybrid arm operating at 4Hz and leveraging it to generate optimal trajectories that serve as expert data to learn a control policy. We performed an extensive evaluation of the policy on a physical hybrid arm capable of jointly controlling rigid and soft actuation. We show that with a single policy, the arm is capable of reaching arbitrary poses in the workspace with 3.73cm (<6% overall arm length) and 17.78 deg error within 12.5s, operating at different control frequencies, and controlling the end effector with different loads. Our results showcase significant improvements in control speed while effectively controlling both the position and orientation of the end effector compared to previous quasistatic controllers for hybrid arms.

References

1.
Uppalapati
,
N. K.
,
Walt
,
B.
,
Havens
,
A. J.
,
Mahdian
,
A.
,
Chowdhary
,
G.
, and
Krishnan
,
G.
,
2020
, “
A Berry Picking Robot With a Hybrid Soft-Rigid Arm: Design and Task Space Control
,”
Robotics Science and Systems
,
Virtual
,
July
,
p. 95
.
2.
Chowdhary
,
G.
,
Gazzola
,
M.
,
Krishnan
,
G.
,
Soman
,
C.
, and
Lovell
,
S.
,
2019
, “
Soft Robotics as an Enabling Technology for Agroforestry Practice and Research
,”
Sustainability
,
11
(
23
), p.
6751
.
3.
Wen
,
T.
,
Hu
,
J.
,
Zhang
,
J.
,
Li
,
X.
,
Kang
,
S.
, and
Zhang
,
N.
,
2024
, “
Design, Performance Analysis, and Experiments of a Soft Robot for Rescue
,”
ASME J. Mech. Rob.
,
16
(
7
), p. 071011.
4.
Kadylak
,
T.
,
Uppalapati
,
N.
,
Huq
,
A.
,
Krishnan
,
G.
, and
Rogers
,
W. A.
,
2023
, “
Engaging Healthcare Providers to Design a Robot for Telehealth
,”
Ergon. Des.
, p.
10648046231193287
.
5.
Liu
,
Y.
,
Ge
,
Z.
,
Yang
,
S.
,
Walker
,
I. D.
, and
Ju
,
Z.
,
2019
, “
Elephant’s Trunk Robot: An Extremely Versatile Under-Actuated Continuum Robot Driven by a Single Motor
,”
ASME J. Mech. Rob.
,
11
(
5
), p.
051008
.
6.
Konda
,
R.
,
Bombara
,
D.
,
Chow
,
E.
, and
Zhang
,
J.
,
2024
, “
Kinematic Modeling and Open-loop Control of a Twisted String Actuator-Driven Soft Robotic Manipulator
,”
ASME J. Mech. Rob.
,
16
(
4
), p.
041007
.
7.
Banerjee
,
H.
,
Pusalkar
,
N.
, and
Ren
,
H.
,
2018
, “
Single-Motor Controlled Tendon-Driven Peristaltic Soft Origami Robot
,”
ASME J. Mech. Rob.
,
10
(
6
), p.
064501
.
8.
Xu
,
Y.
,
Yan
,
D.
,
Zhang
,
K.
,
Li
,
X.
,
Xing
,
Y.
, and
Shao
,
L.-H.
,
2022
, “
Soft Robot Based on Hyperelastic Buckling Controlled by Discontinuous Magnetic Field
,”
ASME J. Mech. Rob.
,
14
(
1
), p.
011008
.
9.
Yip
,
M. C.
, and
Camarillo
,
D. B.
,
2016
, “
Model-less Hybrid Position/Force Control: A Minimalist Approach for Continuum Manipulators in Unknown, Constrained Environments
,”
IEEE Rob. Autom. Lett.
,
1
(
2
), pp.
844
851
.
10.
Ma
,
K.
,
Chen
,
X.
,
Zhang
,
J.
,
Xie
,
Z.
,
Wu
,
J.
, and
Zhang
,
J.
,
2023
, “
Inspired by Physical Intelligence of an Elephant Trunk: Biomimetic Soft Robot With Pre-programmable Localized Stiffness
,”
IEEE Rob. Autom. Lett.
,
8
(
5
), pp.
2898
2905
.
11.
Trivedi
,
D.
,
Rahn
,
C. D.
,
Kier
,
W. M.
, and
Walker
,
I. D.
,
2008
, “
Soft Robotics: Biological Inspiration, State of the Art, and Future Research
,”
Appl. Bionics Biomech.
,
5
(
3
), pp.
99
117
.
12.
Dou
,
W.
,
Zhong
,
G.
,
Cao
,
J.
,
Shi
,
Z.
,
Peng
,
B.
, and
Jiang
,
L.
,
2021
, “
Soft Robotic Manipulators: Designs, Actuation, Stiffness Tuning, and Sensing
,”
Adv. Mater. Technol.
,
6
(
9
), p.
2100018
.
13.
Satheeshbabu
,
S.
,
Uppalapati
,
N. K.
,
Chowdhary
,
G.
, and
Krishnan
,
G.
,
2019
, “
Open Loop Position Control of Soft Continuum Arm Using Deep Reinforcement Learning
,”
International Conference on Robotics and Automation (ICRA)
,
Montreal, Canada
,
May
, pp.
5133
5139
.
14.
Uppalapati
,
N. K.
, and
Krishnan
,
G.
,
2021
, “
Design and Modeling of Soft Continuum Manipulators Using Parallel Asymmetric Combination of Fiber-Reinforced Elastomers
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011010
.
15.
George Thuruthel
,
T.
,
Falotico
,
E.
,
Manti
,
M.
,
Pratesi
,
A.
,
Cianchetti
,
M.
, and
Laschi
,
C.
,
2017
, “
Learning Closed Loop Kinematic Controllers for Continuum Manipulators in Unstructured Environments
,”
Soft Rob.
,
4
(
3
), pp.
285
296
.
16.
Rolf
,
M.
, and
Steil
,
J. J.
,
2013
, “
Efficient Exploratory Learning of Inverse Kinematics on a Bionic Elephant Trunk
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
25
(
6
), pp.
1147
1160
.
17.
George Thuruthel
,
T.
,
Ansari
,
Y.
,
Falotico
,
E.
, and
Laschi
,
C.
,
2018
, “
Control Strategies for Soft Robotic Manipulators: A Survey
,”
Soft Rob.
,
5
(
2
), pp.
149
163
.
18.
Uppalapati
,
N. K.
, and
Krishnan
,
G.
,
2020
, “
Valens: Design of a Novel Variable Length Nested Soft Arm
,”
IEEE Rob. Autom. Lett.
,
5
(
2
), pp.
1135
1142
.
19.
Uppalapati
,
N. K.
,
Kadylak
,
T.
,
Rogers
,
W.
, and
Krishnan
,
G.
,
2020
, “
Morphological Switching Robots to Support Independent Living for Older Adults
,”
International Conference on Intelligent Robotics and Systems
,
Virtual
,
October
, pp.
11995
11997
.
20.
Thuruthel
,
T. G.
,
Falotico
,
E.
,
Renda
,
F.
, and
Laschi
,
C.
,
2018
, “
Model-Based Reinforcement Learning for Closed-Loop Dynamic Control of Soft Robotic Manipulators
,”
IEEE Trans. Rob.
,
35
(
1
), pp.
124
134
.
21.
Gan
,
Y.
,
Li
,
P.
,
Jiang
,
H.
,
Wang
,
G.
,
Jin
,
Y.
,
Chen
,
X.
, and
Ji
,
J.
,
2022
, “
A Reinforcement Learning Method for Motion Control With Constraints on an HPN Arm
,”
IEEE Rob. Autom. Lett.
,
7
(
4
), pp.
12006
12013
.
22.
Centurelli
,
A.
,
Arleo
,
L.
,
Rizzo
,
A.
,
Tolu
,
S.
,
Laschi
,
C.
, and
Falotico
,
E.
,
2022
, “
Closed-Loop Dynamic Control of a Soft Manipulator Using Deep Reinforcement Learning
,”
IEEE Rob. Autom. Lett.
,
7
(
2
), pp.
4741
4748
.
23.
Escande
,
C.
,
Chettibi
,
T.
,
Merzouki
,
R.
,
Coelen
,
V.
, and
Pathak
,
P. M.
,
2014
, “
Kinematic Calibration of a Multisection Bionic Manipulator
,”
IEEE/ASME Trans. Mechatron.
,
20
(
2
), pp.
663
674
.
24.
Webster III
,
R. J.
, and
Jones
,
B. A.
,
2010
, “
Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review
,”
Int. J. Rob. Res.
,
29
(
13
), pp.
1661
1683
.
25.
Shi
,
J.
,
Abad Guaman
,
S.
,
Dai
,
J.
, and
Wurdemann
,
H.
,
2023
, “
Position and Orientation Control for Hyper-elastic Multi-segment Continuum Robots
,”
IEEE/ASME Trans. Mechatron.
,
29
(
2
), pp.
995
1006
.
26.
Satheeshbabu
,
S.
,
Uppalapati
,
N. K.
,
Fu
,
T.
, and
Krishnan
,
G.
,
2020
, “
Continuous Control of a Soft Continuum Arm Using Deep Reinforcement Learning
,”
International Conference on Soft Robotics
,
Virtual
,
May
,
pp. 497–503
.
27.
Wu
,
Q.
,
Gu
,
Y.
,
Li
,
Y.
,
Zhang
,
B.
,
Chepinskiy
,
S. A.
,
Wang
,
J.
,
Zhilenkov
,
A. A.
,
Krasnov
,
A. Y.
, and
Chernyi
,
S.
,
2020
, “
Position Control of Cable-Driven Robotic Soft Arm Based on Deep Reinforcement Learning
,”
Information
,
11
(
6
), p.
310
.
28.
Lin
,
D.
,
Chen
,
W.
,
He
,
K.
,
Jiao
,
N.
,
Wang
,
Z.
, and
Liu
,
L.
,
2022
, “
Position and Orientation Control of Multisection Magnetic Soft Microcatheters
,”
IEEE/ASME Trans. Mechatron.
,
28
(
2
), pp.
907
918
.
29.
Haggerty
,
D. A.
,
Banks
,
M. J.
,
Kamenar
,
E.
,
Cao
,
A. B.
,
Curtis
,
P. C.
,
Mezić
,
I.
, and
Hawkes
,
E. W.
,
2023
, “
Control of Soft Robots With Inertial Dynamics
,”
Sci. Rob.
,
8
(
81
).
30.
Bruder
,
D.
,
Fu
,
X.
,
Gillespie
,
R. B.
,
Remy
,
C. D.
, and
Vasudevan
,
R.
,
2020
, “
Data-Driven Control of Soft Robots Using Koopman Operator Theory
,”
IEEE Trans. Rob.
,
37
(
3
), pp.
948
961
.
31.
Bruder
,
D.
,
Fu
,
X.
,
Gillespie
,
R. B.
,
Remy
,
C. D.
, and
Vasudevan
,
R.
,
2021
, “
Koopman-Based Control of a Soft Continuum Manipulator Under Variable Loading Conditions
,”
IEEE Rob. Autom. Lett.
,
6
(
4
), pp.
6852
6859
.
32.
Katzschmann
,
R. K.
,
Thieffry
,
M.
,
Goury
,
O.
,
Kruszewski
,
A.
,
Guerra
,
T.-M.
,
Duriez
,
C.
, and
Rus
,
D.
,
2019
, “
Dynamically Closed-Loop Controlled Soft Robotic Arm Using a Reduced Order Finite Element Model With State Observer
,”
International Conference on Soft Robotics
,
Seoul, South Korea
,
April
, pp.
717
724
.
33.
Fischer
,
O.
,
Toshimitsu
,
Y.
,
Kazemipour
,
A.
, and
Katzschmann
,
R. K.
,
2023
, “
Dynamic Task Space Control Enables Soft Manipulators to Perform Real-World Tasks
,”
Adv. Intell. Syst.
,
5
(
1
), p.
2200024
.
34.
Gillespie
,
M. T.
,
Best
,
C. M.
,
Townsend
,
E. C.
,
Wingate
,
D.
, and
Killpack
,
M. D.
,
2018
, “
Learning Nonlinear Dynamic Models of Soft Robots for Model Predictive Control With Neural Networks
,”
International Conference on Soft Robotics
,
Livorno, Italy
,
April
, pp.
39
45
.
35.
Tariverdi
,
A.
,
Venkiteswaran
,
V. K.
,
Richter
,
M.
,
Elle
,
O. J.
,
Tørresen
,
J.
,
Mathiassen
,
K.
,
Misra
,
S.
, and
Martinsen
,
Ø. G.
,
2021
, “
A Recurrent Neural-Network-Based Real-Time Dynamic Model for Soft Continuum Manipulators
,”
Front. Rob. AI
,
8
, p.
631303
.
36.
Li
,
M.
,
Kang
,
R.
,
Branson
,
D. T.
, and
Dai
,
J. S.
,
2017
, “
Model-Free Control for Continuum Robots Based on an Adaptive Kalman Filter
,”
IEEE/ASME Trans. Mechatron.
,
23
(
1
), pp.
286
297
.
37.
Doroudchi
,
A.
, and
Berman
,
S.
,
2021
, “
Configuration Tracking for Soft Continuum Robotic Arms Using Inverse Dynamic Control of a Cosserat Rod Model
,”
International Conference on Soft Robotics
,
New Haven, CT
,
April
, pp.
207
214
.
38.
Thuruthel
,
T. G.
,
Falotico
,
E.
,
Renda
,
F.
, and
Laschi
,
C.
,
2017
, “
Learning Dynamic Models for Open Loop Predictive Control of Soft Robotic Manipulators
,”
Bioinspir. Biomim.
,
12
(
6
). .
066003
.
39.
Alqumsan
,
A. A.
,
Khoo
,
S.
, and
Norton
,
M.
,
2019
, “
Robust Control of Continuum Robots Using Cosserat Rod Theory
,”
Mech. Mach. Theory
,
131
, pp.
48
61
.
40.
Jitosho
,
R.
,
Lum
,
T. G. W.
,
Okamura
,
A.
, and
Liu
,
K.
,
2023
, “
Reinforcement Learning Enables Real-Time Planning and Control of Agile Maneuvers for Soft Robot Arms
,”
Conference on Robotic Learning
,
Atlanta, GA
,
November
, pp.
1131
1153
.
41.
Nazeer
,
M. S.
,
Bianchi
,
D.
,
Campinoti
,
G.
,
Laschi
,
C.
, and
Falotico
,
E.
,
2023
, “
Policy Adaptation Using an Online Regressing Network in a Soft Robotic Arm
,”
International Conference on Soft Robotics
,
Singapore
,
April
, IEEE, pp.
1
7
.
42.
Nazeer
,
M. S.
,
Laschi
,
C.
, and
Falotico
,
E.
,
2024
, “
Rl-Based Adaptive Controller for High Precision Reaching in a Soft Robot Arm
,”
IEEE Trans. Rob.
,
40
, pp.
2498
2512
.
43.
Piqué
,
F.
,
Kalidindi
,
H. T.
,
Fruzzetti
,
L.
,
Laschi
,
C.
,
Menciassi
,
A.
, and
Falotico
,
E.
,
2022
, “
Controlling Soft Robotic Arms Using Continual Learning
,”
IEEE Rob. Autom. Lett.
,
7
(
2
), pp.
5469
5476
.
44.
Preiss
,
J. A.
,
Millard
,
D.
,
Yao
,
T.
, and
Sukhatme
,
G. S.
,
2022
, “
Tracking Fast Trajectories With a Deformable Object Using a Learned Model
,”
International Conference on Robotics and Automation (ICRA)
,
Philadelphia, PA
,
May
, IEEE, pp.
1351
1357
.
45.
Huang
,
Y.
,
Hofer
,
M.
, and
D’Andrea
,
R.
,
2021
, “
Offset-Free Model Predictive Control: A Ball Catching Application With a Spherical Soft Robotic Arm
,”
International Conference on Intelligent Robotics and Systems
,
Prague, Czech Republic
,
September
, IEEE, pp.
563
570
.
46.
Céspedes
,
A.
,
Terreros
,
R.
,
Morales
,
S.
,
Huamaní
,
A.
,
Fabián
,
J.
, and
Canahuire
,
R.
,
2024
, “
Model Predictive Control of a Soft Laparoscope Using Neural Networks
,”
International Conference on Mechatronics, Control and Robotics
,
Jeju, South Korea
,
February
, IEEE, pp.
57
61
.
47.
Jensen
,
S.
,
Salmon
,
J. L.
, and
Killpack
,
M. D.
,
2024
, “
Model Evolutionary Gain-Based Predictive Control (MEGA-PC) for Soft Robotics
,”
International Conference on Soft Robotics
,
San Diego, USA
,
April
, IEEE, pp.
816
823
.
48.
Tang
,
Z.
,
Xin
,
W.
,
Wang
,
P.
, and
Laschi
,
C.
,
2024
, “
Learning-Based Control for Soft Robot–Environment Interaction With Force/Position Tracking Capability
,”
Soft Rob.
,
11
(
5
), pp.
767
778
.
49.
Hyatt
,
P.
,
Wingate
,
D.
, and
Killpack
,
M. D.
,
2019
, “
Model-Based Control of Soft Actuators Using Learned Non-linear Discrete-Time Models
,”
Front. Rob. AI
,
6
, p.
22
.
50.
Singh
,
G.
, and
Krishnan
,
G.
,
2017
, “
A Constrained Maximization Formulation to Analyze Deformation of Fiber Reinforced Elastomeric Actuators
,”
Smart Mater. Struct.
,
26
(
6
), p.
065024
.
51.
Rumelhart
,
D. E.
,
Hinton
,
G. E.
, and
Williams
,
R. J.
,
1985
, “Learning Internal Representations by Error Propagation,” Tech. Rep., California Univ San Diego La Jolla Inst for Cognitive Science.
52.
Haykin
,
S.
,
1998
,
Neural Networks: A Comprehensive Foundation
,
Prentice Hall PTR
,
Englewood Cliffs, NJ
.
53.
Hochreiter
,
S.
, and
Schmidhuber
,
J.
,
1997
, “
Long Short-Term Memory
,”
Neural Comput.
,
9
(
8
), pp.
1735
1780
.
54.
Voelker
,
A.
,
Kajić
,
I.
, and
Eliasmith
,
C.
,
2019
, “
Legendre Memory Units: Continuous-Time Representation in Recurrent Neural Networks
,”
Advances in Neural Information and Processing Systems
,
Vancouver, Canada
,
December
, pp.
15570
15579
.
55.
Kingma
,
D. P.
, and
Ba
,
J.
,
2015
, “
Adam: A Method for Stochastic Optimization
,”
International Conference for Learning Representations
,
San Diego, CA
,
May
.
56.
Sambharya
,
R.
,
Hall
,
G.
,
Amos
,
B.
, and
Stellato
,
B.
,
2024
, “
Learning to Warm-Start Fixed-Point Optimization Algorithms
,”
J. Mach. Learn. Res.
,
25
(
166
), pp.
1
46
.
57.
Kamtikar
,
S.
,
Marri
,
S.
,
Walt
,
B.
,
Uppalapati
,
N. K.
,
Krishnan
,
G.
, and
Chowdhary
,
G.
,
2022
, “
Visual Servoing for Pose Control of Soft Continuum Arm in a Structured Environment
,”
IEEE Rob. Autom. Lett.
,
7
(
2
), pp.
5504
5511
.
58.
Garcia
,
C. E.
,
Prett
,
D. M.
, and
Morari
,
M.
,
1989
, “
Model Predictive Control: Theory and Practice—A Survey
,”
Automatica
,
25
(
3
), pp.
335
348
.
59.
Williams
,
G.
,
Aldrich
,
A.
, and
Theodorou
,
E. A.
,
2017
, “
Model Predictive Path Integral Control: From Theory to Parallel Computation
,”
J. Guid. Control Dyn.
,
40
(
2
), pp.
344
357
.
60.
Alonso
,
C. A.
, and
Tseng
,
S.-H.
,
2022
, “
Effective GPU Parallelization of Distributed and Localized Model Predictive Control
,”
International Conference on Control and Automation
,
Naples, Italy
,
June
, IEEE, pp.
199
206
.
61.
Adabag
,
E.
,
Atal
,
M.
,
Gerard
,
W.
, and
Plancher
,
B.
,
2024
, “
Mpcgpu: Real-Time Nonlinear Model Predictive Control Through Preconditioned Conjugate Gradient on the GPU
,”
International Conference on Robotics and Automation (ICRA)
,
Yokohama, Japan
,
May
, IEEE, pp.
9787
9794
.
62.
Lee
,
Y.
,
Choi
,
K. H.
, and
Kim
,
K.-S.
,
2024
, “
GPU-Enabled Parallel Trajectory Optimization Framework for Safe Motion Planning of Autonomous Vehicles
,”
IEEE Rob. Autom. Lett.
,
9
(
11
), pp.
10407
10414
.
You do not currently have access to this content.