Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This article reports on the design, fabrication, and testing of flexible, collapsible structures inspired by origami and kirigami that can be used to protect small rotorcraft from collision impacts and to serve as landing gear. Twenty structures created from variations of Pako Pako, Magic Ball, and Herringbone fold patterns were laser cut from cardstock and evaluated experimentally. Some of the Pako Pako structures were designed to have graduated mechanical stiffness. An empirical procedure based on acceleration measurements has been developed that enables quantitative evaluation of each structure based on the characterization parameters of peak acceleration, peak velocity, translational kinetic energy, impact duration, mass, and mechanical stiffness. Structures were mounted onto the front of a radio-controlled (RC) car and driven on a linear test track into a rigid wall. Accelerations measured during the collisions were numerically integrated to determine velocities over the impact and collapse/compression of the structures. Flight tests conducted with small RC quadcopters demonstrated that the collapsible structures could successfully be used to mitigate collisions, enough to enable the quadcopters to continue flying after a direct impact and to land indoors or on outdoor terrain with varying slopes and surfaces. Based on trade-off comparisons between the evaluative metrics of the cases studied, conical Pako Pako structures with uniform stiffness are shown to be the most effective for collision resilience and landing.

References

1.
Floreano
,
D.
, and
Wood
,
R. J.
,
2015
, “
Science, Technology and the Future of Small Autonomous Drones
,”
Nature
,
521
(
7553
), pp.
460
466
.
2.
Zhu
,
H. Y.
,
Magsino
,
E. M.
,
Hamim
,
S. M.
,
Lin
,
C.-T.
, and
Chen
,
H.-T.
,
2021
, “
A Drone Nearly Hit Me! A Reflection on the Human Factors of Drone Collisions
,”
Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems No. 210
,
Virtual Online (Yokohama, Japan)
,
May 8–13
, pp.
1
6
.
3.
Liu
,
Z.
, and
Karydis
,
K.
,
2021
, “
Toward Impact-Resilient Quadrotor Design, Collision Characterization and Recovery Control to Sustain Flight After Collisions
,”
Proceeding of the 2021 IEEE International Conference on Robotics and Automation (ICRA)
,
Xi’an, China
,
May 30–June 5
, pp.
183
189
.
4.
Mintchev
,
S.
,
de Rivaz
,
S.
, and
Floreano
,
D.
,
2017
, “
Insect-Inspired Mechanical Resilience for Multicopters
,”
IEEE Robot. Autom. Lett.
,
2
(
3
), pp.
1248
1255
.
5.
Phan
,
H. V.
, and
Park
,
H. C.
,
2020
, “
Mechanisms of Collision Recovery in Flying Beetles and Flapping-Wing Robots
,”
Science
,
370
(
6521
), pp.
1214
1219
.
6.
de Azambuja
,
R.
,
Fouad
,
H.
,
Bouteiller
,
Y.
,
Sol
,
C.
, and
Beltrame
,
G.
,
2022
, “
When Being Soft Makes You Tough: A Collision-Resilient Quadcopter Inspired by Arthropods' Exoskeletons
,”
Proceedings of the 2022 IEEE International Conference on Robotics and Automation
,
Philadelphia, PA
,
May 23–27
, pp.
7854
7860
.
7.
Salaan
,
C. J.
,
Tadakuma
,
K.
,
Okada
,
Y.
,
Sakai
,
Y.
,
Ohno
,
K.
, and
Tadokoro
,
S.
,
2019
, “
Development and Experimental Validation of Aerial Vehicle With Passive Rotating Shell on Each Rotor
,”
IEEE Robot. Autom. Lett.
,
4
(
3
), pp.
2568
2575
.
8.
Hedayati
,
H.
,
Suzuki
,
R.
,
Leithinger
,
D.
, and
Szafir
,
D.
,
2020
, “
Pufferbot: Actuated Expandable Structures for Aerial Robots
,”
Proceeding of the IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Virtual Online (Las Vegas, NV)
,
Oct. 25, 2020–Jan. 24, 2021
, pp.
1338
1343
.
9.
Briod
,
A.
,
Kornatowski
,
P.
,
Zufferey
,
J. C.
, and
Floreano
,
D.
,
2014
, “
A Collision-Resilient Flying Robot
,”
J. Field Rob.
,
31
(
4
), pp.
496
509
.
10.
Zha
,
J.
,
Wu
,
X.
,
Kroeger
,
J.
,
Perez
,
N.
, and
Mueller
,
M. W.
,
2021
, “
A Collision-Resilient Aerial Vehicle With Icosahedron Tensegrity Structure
,”
Proceeding of the IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Virtual Online (Las Vegas, NV)
,
Oct. 25, 2020–Jan. 24, 2021
, pp.
1407
1412
.
11.
Li
,
S.
,
Fang
,
H.
,
Sadeghi
,
S.
,
Bhovad
,
P.
, and
Wang
,
K.-W.
,
2019
, “
Architected Origami Materials: How Folding Creates Sophisticated Mechanical Properties
,”
Adv. Mater.
,
31
(
5
), p.
1805282
.
12.
Xiang
,
X.
,
Lu
,
G.
, and
You
,
Z.
,
2020
, “
Energy Absorption of Origami Inspired Structures and Materials
,”
Thin Walled Struct.
,
157
, p.
107130
.
13.
Mintchev
,
S.
,
Shintake
,
J.
, and
Floreano
,
D.
,
2018
, “
Bioinspired Dual-Stiffness Origami
,”
Sci. Robot.
,
3
(
20
), p.
eaau0275
.
14.
Faber
,
J. A.
,
Arrieta
,
A. F.
, and
Studart
,
A. R.
,
2018
, “
Bioinspired Spring Origami
,”
Science
,
359
(
6382
), pp.
1386
1391
.
15.
Zhang
,
K.
,
Zhu
,
Y.
,
Lou
,
C.
,
Zheng
,
P.
, and
Movac
,
M.
,
2019
, “
A Design and Fabrication Approach for Pneumatic Soft Robotic Arms Using 3D Printed Origami Skeletons
,”
Proceedings of the 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft)
,
Seoul, South Korea
,
Apr. 14–18
, pp.
821
827
.
16.
Dilaveroğlu
,
L.
, and
Özcan
,
O.
,
2020
, “
MiniCoRe: A Miniature, Foldable, Collision Resilient Quadcopter
,”
Proceedings of the 3rd IEEE International Conference on Soft Robotics (RoboSoft)
,
Virtual Online (New Haven, CT)
,
May 15–July 15
, pp.
176
181
.
17.
Jing
,
S.
, and
Chirarattananon
,
P.
,
2019
, “
A Quadrotor With an Origami-Inspired Protective Mechanism
,”
IEEE Robot. Autom. Lett.
,
4
(
4
), pp.
3820
3827
.
18.
Kornatowski
,
P. M.
,
Mintchev
,
S.
, and
Floreano
,
D.
,
2017
, “
An Origami-Inspired Cargo Drone
,”
Proceeding of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, BC, Canada
,
Sept. 24–28
, pp.
6855
6862
.
19.
Sareh
,
P.
,
Chermprayong
,
P.
,
Emmanuelli
,
M.
,
Nadeem
,
H.
, and
Kovac
,
M.
,
2018
, “
Rotorigami: A Rotary Origami Protective System for Robotic Rotorcraft
,”
Sci. Robot.
,
3
(
22
), p.
eaah5228
.
20.
Zhang
,
K.
,
Chermprayong
,
P.
,
Tzoumanikas
,
D.
,
Li
,
W.
,
Grimm
,
M.
,
Smentoch
,
M.
,
Leutenegger
,
S.
, and
Mirko
,
K.
,
2010
, “
Bioinspired Design of a Landing System With Soft Shock Absorbers for Autonomous Aerial Robots
,”
J. Field Rob.
,
36
(
1
), pp.
230
251
.
21.
Seriani
,
S.
,
2019
, “
A New Mechanism for Soft Landing in Robotic Space Exploration
,”
Robotics
,
8
(
4
), pp.
103
125
.
22.
Song
,
J.
,
Chen
,
Y.
, and
Lu
,
G.
,
2012
, “
Axial Crushing of Thin-Walled Structures With Origami Patterns
,”
Thin Walled Struct.
,
54
, pp.
65
71
.
23.
Wo
,
Z.
,
Raneses
,
J. M.
, and
Filipov
,
E. T.
,
2022
, “
Locking Zipper-Coupled Origami Tubes for Deployable Energy Absorption
,”
ASME J. Mech. Rob.
,
14
(
4
), p.
041007
.
24.
Li
,
J.
,
Chen
,
Y.
,
Feng
,
X.
,
Feng
,
J.
, and
Sareh
,
P.
,
2021
, “
Computational Modeling and Energy Absorption Behavior of Thin-Walled Tubes With Kresling Origami Pattern
,”
J. Int. Assoc. Shell Spatial Struct.
,
62
(
2
), pp.
71
81
.
25.
Yasuda
,
H.
,
Miyazawa
,
Y.
,
Charalampidis
,
E. G.
,
Chong
,
C.
,
Kevrekidis
,
P. G.
, and
Yang
,
J.
,
2019
, “
Origami-Based Impact Mitigation Via Rarefaction Solitary Wave Creation
,”
Sci. Adv.
,
5
(
5
), p.
eaau2835
.
26.
Ma
,
J.
,
Song
,
J.
, and
Chen
,
Y.
,
2018
, “
An Origami-Inspired Structure With Graded Stiffness
,”
Int. J. Mech. Sci.
,
136
, pp.
134
142
.
27.
Xie
,
R.
,
Hou
,
D.
,
Ma
,
J.
,
Chen
,
Y.
, and
You
,
Z.
,
2016
, “
Geometrically Graded Origami Tubes
,”
Proceeding of ASME 2016 International. Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
,
Aug. 21–24
, p.
V05BT07A010
.
28.
Yuan
,
L.
,
Dai
,
H.
,
Song
,
J.
,
Ma
,
J.
, and
Chen
,
Y.
,
2020
, “
The Behavior of a Functionally Graded Origami Structure Subjected to Quasi-Static Compression
,”
Mater. Des.
,
189
(
2020
), p.
108494
.
29.
Grey
,
S. W.
,
Scarpa
,
F.
, and
Schenk
,
M.
,
2020
, “
Mechanics of Paper-Folded Origami: A Cautionary Tale
,”
Mech. Res. Commun.
,
107
, p.
103540
.
30.
Fuse
,
T.
,
2012
,
Spiral Origami Art Design
,
Viereck Verlag
,
Muenchen
.
31.
Kresling
,
B.
,
1997
, “
Folded and Unfolded Nature
,”
Origami Science and Art: Proc. 2nd International Meeting of Origami Science and Scientific Origami
,
Otsu, Shiga, Japan
,
Nov. 29–Dec. 2
, pp.
93
108
.
32.
Kresling
,
B.
,
2020
, “
The Fifth Fold: Complex Symmetries in Kresling-Origami Patterns
,”
Symmetry: Cult. Sci.
,
31
(
4
), pp.
403
416
.
You do not currently have access to this content.