Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Many deployable satellite systems benefit from having low mass and high surface area, which has led to the proliferation of gossamer structures in space-based applications. Gossamer structures are characterized by lightweight, low-stiffness membranes, which can flex and roll to compactly stow. An effect of rolling a gossamer structure is that there is a tangential separation along adjacent panels as they roll, resulting in relative motion between panels. To aid designers in predicting and accommodating this motion, a method for modeling the slippage between adjacent panels that occurs while rolling is presented. This analytical slippage model and algorithm is a function of (1) the number of panels, (2) the thickness of each panel, (3) the length of each panel, and (4) the minimum bend radius of the material. It is shown that the thickness and length have a positive correlation with increased slippage, whereas the number of panels and minimum bend radius have a negative correlation with increased slippage. This model allows designers to predict both the magnitude of slippage that occurs where panels meet, as well as the relative range of slippage that occurs within the whole pattern. With these predictions, an appropriate strategy can be selected for accommodating this motion.

References

2.
Zhang
,
X.
,
Kang
,
X.
, and
Li
,
B.
,
2023
, “
Origami-Inspired Design of a Single-Degree-of-Freedom Reconfigurable Wing With Lockable Mechanisms
,”
ASME J. Mech. Rob.
,
16
(
7
), p.
071008
.
3.
Guan
,
Y.
,
Zhuang
,
Z.
,
Zhang
,
Z.
, and
Dai
,
J. S.
,
2023
, “
Design, Analysis, and Experiment of the Origami Robot Based on Spherical-Linkage Parallel Mechanism
,”
ASME J. Mech. Des.
,
145
(
8
), p.
081701
.
4.
Chen
,
F.
, and
Aukes
,
D. M.
,
2023
, “
Direct Encoding of Tunable Stiffness Into an Origami-Inspired Jumping Robot Leg
,”
ASME J. Mech. Rob.
,
16
(
3
), p.
031012
.
5.
Xing
,
D.
, and
You
,
Z.
,
2023
, “
Origami Claw Tessellation and Its Stacked Structure
,”
ASME J. Mech. Rob.
,
16
(
1
), p.
011001
.
6.
Yan
,
S.
,
Song
,
K.
,
Wang
,
X.
,
Li
,
J.
,
Ma
,
Z.
, and
Zhou
,
X.
,
2024
, “
An Origami-Enabled Soft Linear Actuator and Its Application on a Crawling Robot
,”
ASME J. Mech. Rob.
,
17
(
1
), p.
011002
.
7.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
Hoboken, NJ
.
8.
Branz
,
F.
, and
Francesconi
,
A.
,
2023
, “
Compliant Joint to Reduce Docking Loads Between Cubesats
,”
Acta Astronaut.
,
205
(
1
), pp.
153
162
.
9.
Liang
,
J.
,
Zhang
,
X.
,
Zhu
,
B.
,
Zhang
,
H.
, and
Wang
,
R.
,
2023
, “
Topology Optimization Method for Designing Compliant Mechanism With Given Constant Force Range
,”
ASME J. Mech. Rob.
,
15
(
6
), p.
061008
.
10.
1994
, “Dimensional Synthesis of Compliant Constant-Force Slider Mechanisms,” Vol. 23rd Biennial Mechanisms Conference: Machine Elements and Machine Dynamics of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference.
11.
McGowan
,
P.
, and
Hao
,
G.
,
2022
, “
Design of a Morphing Compliant Mechanism With Separate Gripping and Retraction Modes Using a Single Actuation
,”
ASME J. Mech. Rob.
,
15
(
1
), p.
015002
.
12.
Jenkins
,
C. H.
,
2001
,
Gossamer Spacecraft: Membrane and Inflatable Structures Technology for Space Applications
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
13.
Chandra
,
M.
,
Kumar
,
S.
,
Chattopadhyaya
,
S.
,
Chatterjee
,
S.
, and
Kumar
,
P.
,
2021
, “
A Review on Developments of Deployable Membrane-Based Reflector Antennas
,”
Adv. Space Res.
,
68
(
9
), pp.
3749
3764
.
14.
Arya
,
M.
,
Lee
,
N.
, and
Pellegrino
,
S.
,
2016
, “
Ultralight Structures for Space Solar Power Satellites
,”
3rd AIAA Spacecraft Structures Conference
,
San Diego, CA
, Jan. 4–8, p.
1950
.
15.
Fang
,
H.
,
Lou
,
M.
,
Huang
,
J.
,
Hsia
,
L.-M.
,
Quijano
,
U.
,
Pelaez
,
G.
, and
Svolopoulos
,
V.
,
2004
, “
Development of a 7-Meter Inflatable Reflectarray Antenna
,”
45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference
,
Palm Springs, CA
,
Apr. 19–22
, p.
1902
.
16.
Seefeldt
,
P.
,
Spietz
,
P.
,
Sproewitz
,
T.
,
Grundmann
,
J. T.
,
Hillebrandt
,
M.
,
Hobbie
,
C.
,
Ruffer
,
M.
,
Straubel
,
M.
,
Tóth
,
N.
, and
Zander
,
M.
,
2017
, “
Gossamer-1: Mission Concept and Technology for a Controlled Deployment of Gossamer Spacecraft
,”
Adv. Space Res.
,
59
(
1
), pp.
434
456
.
17.
Ruggiero
,
E. J.
, and
Inman
,
D. J.
,
2006
, “
Gossamer Spacecraft: Recent Trends in Design, Analysis, Experimentation, and Control
,”
J. Spacecr. Rockets
,
43
(
1
), pp.
10
24
.
18.
Furuya
,
H.
,
Mori
,
O.
,
Sawada
,
H.
,
Okuizum
,
N.
,
Shirasawa
,
Y.
,
Natori
,
M.
,
Miyazaki
,
Y.
, and
Matunaga
,
S.
,
2011
, “
Manufacturing and Folding of Solar Sail 'IKAROS’
,”
52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
,
Denver, CO
,
Apr. 4–7
, p.
1967
.
19.
Arya
,
M.
,
Hodges
,
R.
,
Sauder
,
J. F.
,
Horst
,
S.
,
Mobrem
,
M.
,
Pedivellano
,
A.
,
Wen
,
A.
,
Truong
,
A.
, and
Pellegrino
,
S.
,
2021
, “
Lightweight Composite Reflectarray that can be Flattened, Folded, and Coiled for Compact Stowage
,”
Aerospace Research Central
, p.
17
.
20.
Arya
,
M.
,
Sauder
,
J. F.
,
Hodges
,
R.
, and
Pellegrino
,
S.
,
2019
, “
Large-Area Deployable Reflectarray Antenna for CubeSats
,”
Aerospace Research Central
, p.
12
.
21.
Ruhl
,
L. E.
, and
Wiens
,
M. T.
,
2023
, “Deployable System With Flexible Membrane,” U.S. Patent No. 11724828.
22.
Tang
,
Y.
,
Guo
,
H.
,
Liu
,
R.
, and
Deng
,
Z.
,
2023
, “
Space Membrane Wrinkle Analytical Model Based on Piecewise Stress Field
,”
Thin-Walled Struct.
,
189
(
1
), p.
110869
.
23.
Arya
,
M.
,
Lee
,
N.
, and
Pellegrino
,
S.
,
2015
, “
Wrapping Thick Membranes With Slipping Folds
,”
2nd AIAA Spacecraft Structures Conference
,
Kissimmee, FL
,
Jan. 5–9
, p.
0682
.
24.
Arya
,
M.
,
Lee
,
N.
, and
Pellegrino
,
S.
,
2017
, “
Crease-Free Biaxial Packaging of Thick Membranes With Slipping Folds
,”
Int. J. Solids Struct.
,
108
(
1
), pp.
24
39
.
You do not currently have access to this content.