Abstract

The wheel-legged robot inherits the merit of both the wheeled robot and the legged robot, which can not only adapt to the complex terrain but also maintain the driving efficiency on the flat road. This article presents an optimization-based approach that leverage ideas from computational geometric mechanics to generate safe and high-quality wheel-leg hybrid motions among obstacles. The formulation of the proposed motion optimization problem incorporates the Lagrange–d’Alembert principle as the robot’s dynamic constraints and an efficient closed-form formulation of collision-free constraints. By discretizing the variational mechanics principle directly, rather than its corresponding forced Euler–Lagrange equation, the continuous trajectory optimization problem is transformed into a nonlinear programming (NLP) problem. Numerical simulations and several real-world experiments are conducted on a wheel-legged robot to demonstrate the effectiveness of the proposed trajectory generation approach.

References

1.
Bjelonic
,
M.
,
Bellicoso
,
C. D.
,
de Viragh
,
Y.
,
Sako
,
D.
,
Tresoldi
,
F. D.
,
Jenelten
,
F.
, and
Hutter
,
M.
,
2019
, “
Keep Rollin’—Whole-Body Motion Control and Planning for Wheeled Quadrupedal Robots
,”
IEEE Robot. Autom. Lett.
,
4
(
2
), pp.
2116
2123
.
2.
SunSpiral
,
V.
,
Wheeler
,
D.
,
Chavez-Clemente
,
D.
, and
Mittman
,
D.
,
2012
, “
Development and Field Testing of the Footfall Planning System for the Athlete Robots
,”
J. Field Robot.
,
29
(
3
), pp.
483
505
.
3.
Kamedula
,
M.
,
Kashiri
,
N.
, and
Tsagarakis
,
N. G.
,
2018
, “
On the Kinematics of Wheeled Motion Control of a Hybrid Wheeled-Legged Centauro Robot
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5
, pp.
2426
2433
.
4.
Klamt
,
T.
, and
Behnke
,
S.
,
2018
, “
Planning Hybrid Driving-Stepping Locomotion on Multiple Levels of Abstraction
,” 2018 IEEE International Conference on Robotics and Automation (ICRA),
Brisbane, Australia
,
May 21–25
, pp.
1695
1702
.
5.
Leppänen
,
I.
,
2007
, “
Automatic Locomotion Mode Control of Wheel-Legged Robots
,” Ph.D. thesis, Helsinki University of Technology, Helsinki, Finland.
6.
Grand
,
C.
,
Benamar
,
F.
,
Plumet
,
F.
, and
Bidaud
,
P.
,
2004
, “
Stability and Traction Optimization of a Reconfigurable Wheel-Legged Robot
,”
Int. J. Rob. Res.
,
23
(
10–11
), pp.
1041
1058
.
7.
Chen
,
W.-H.
,
Lin
,
H.-S.
,
Lin
,
Y.-M.
, and
Lin
,
P.-C.
,
2017
, “
Turboquad: A Novel Leg-Wheel Transformable Robot With Smooth and Fast Behavioral Transitions
,”
IEEE Trans. Robot.
,
33
(
5
), pp.
1025
1040
.
8.
Wei
,
Z.
,
Song
,
G.
,
Qiao
,
G.
,
Zhang
,
Y.
, and
Sun
,
H.
,
2017
, “
Design and Implementation of a Leg-Wheel Robot: Transleg
,”
ASME J. Mech. Rob.
,
9
(
5
), p.
051001
.
9.
Li
,
X.
,
Zhou
,
H.
,
Feng
,
H.
,
Zhang
,
S.
, and
Fu
,
Y.
,
2018
, “
Design and Experiments of a Novel Hydraulic Wheel-Legged Robot (WLR)
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5
, pp.
3292
3297
.
10.
Suzumura
,
A.
, and
Fujimoto
,
Y.
,
2014
, “
Real-Time Motion Generation and Control Systems for High Wheel-Legged Robot Mobility
,”
IEEE Trans. Ind. Electron.
,
61
(
7
), pp.
3648
3659
.
11.
Du
,
W.
,
Fnadi
,
M.
, and
Benamar
,
F.
,
2020
, “
Rolling Based Locomotion on Rough Terrain for a Wheeled Quadruped Using Centroidal Dynamics
,”
Mech. Mach. Theory
,
153
, p.
103984
.
12.
Harmat
,
A.
,
Trentini
,
M.
, and
Sharf
,
I.
,
2013
, “
Jumping Behaviour for a Wheeled Quadruped Robot: Simulation and Experiments
,”
J. Unmanned Veh. Syst.
,
1
(
1
), pp.
41
60
.
13.
Geilinger
,
M.
,
Poranne
,
R.
,
Desai
,
R.
,
Thomaszewski
,
B.
, and
Coros
,
S.
,
2018
, “
Skaterbots: Optimization-Based Design and Motion Synthesis for Robotic Creatures With Legs and Wheels
,”
ACM Trans. Graph.
,
37
(
4
), p.
160
.
14.
Li
,
J.
,
Qin
,
H.
,
Wang
,
J.
, and
Li
,
J.
,
2022
, “
Openstreetmap-Based Autonomous Navigation for the Four Wheel-Legged Robot Via 3d-Lidar and CCD Camera
,”
IEEE Trans. Ind. Electron.
,
69
(
3
), pp.
2708
2717
.
15.
Alamdari
,
A.
, and
Krovi
,
V. N.
,
2016
, “
Static Balancing of Highly Reconfigurable Articulated Wheeled Vehicles for Power Consumption Reduction of Actuators
,”
Int. J. Mech. Robotic Syst.
,
3
(
1
), pp.
15
31
.
16.
Wen
,
K.
, and
Gosselin
,
C.
,
2021
, “
Exploiting Redundancies for Workspace Enlargement and Joint Trajectory Optimization of a Kinematically Redundant Hybrid Parallel Robot
,”
ASME J. Mech. Rob.
,
13
(
4
), p.
040905
.
17.
Manchester
,
Z.
,
Doshi
,
N.
,
Wood
,
R. J.
, and
Kuindersma
,
S.
,
2019
, “
Contact-Implicit Trajectory Optimization Using Variational Integrators
,”
Int. J. Rob. Res.
,
38
(
12–13
), pp.
1463
1476
.
18.
Paden
,
B.
,
Čáp
,
M.
,
Yong
,
S. Z.
,
Yershov
,
D.
, and
Frazzoli
,
E.
,
2016
, “
A Survey of Motion Planning and Control Techniques for Self-driving Urban Vehicles
,”
IEEE Trans. Intell. Veh.
,
1
(
1
), pp.
33
55
.
19.
Betsch
,
P.
,
Hesch
,
C.
,
Sänger
,
N.
, and
Uhlar
,
S.
,
2010
, “
Variational Integrators and Energy-Momentum Schemes for Flexible Multibody Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
3
), p.
031001
.
20.
Peng
,
H.
,
Li
,
F.
,
Liu
,
J.
, and
Ju
,
Z.
,
2020
, “
A Symplectic Instantaneous Optimal Control for Robot Trajectory Tracking With Differential-Algebraic Equation Models
,”
IEEE Trans. Ind. Electron.
,
67
(
5
), pp.
3819
3829
.
21.
Nikhilraj
,
A.
,
Simha
,
H.
, and
Priyadarshan
,
H.
,
2019
, “
Optimal Energy Trajectory Generation for a Quadrotor Uav Using Geometrically Exact Computations on Se(3)
,”
IEEE Contr. Syst. Lett.
,
3
(
1
), pp.
216
221
.
22.
Zucker
,
M.
,
Ratliff
,
N.
,
Dragan
,
A. D.
,
Pivtoraiko
,
M.
,
Klingensmith
,
M.
,
Dellin
,
C. M.
,
Bagnell
,
J. A.
, and
Srinivasa
,
S. S.
,
2013
, “
Chomp: Covariant Hamiltonian Optimization for Motion Planning
,”
Int. J. Rob. Res.
,
32
(
9–10
), pp.
1164
1193
.
23.
Schulman
,
J.
,
Duan
,
Y.
,
Ho
,
J.
,
Lee
,
A.
,
Awwal
,
I.
,
Bradlow
,
H.
,
Pan
,
J.
,
Patil
,
S.
,
Goldberg
,
K.
, and
Abbeel
,
P.
,
2014
, “
Motion Planning With Sequential Convex Optimization and Convex Collision Checking
,”
Int. J. Rob. Res.
,
33
(
9
), pp.
1251
1270
.
24.
Ericson
,
C.
,
2005
,
Real-Time Collision Detection
,
Morgan Kaufmann
,
San Francisco
.
25.
Gilbert
,
E.
,
Johnson
,
D.
, and
Keerthi
,
S.
,
1988
, “
A Fast Procedure for Computing the Distance Between Complex Objects in Three-Dimensional Space
,”
IEEE J. Robotics Autom.
,
4
(
2
), pp.
193
203
.
26.
van den Bergen
,
G.
,
2001
, “
Proximity Queries and Penetration Depth Computation on 3D Game Objects
.” https://api.semanticscholar.org/CorpusID:3095084
27.
Guthrie
,
J.
,
Kobilarov
,
M.
, and
Mallada
,
E.
,
2022
, “
Closed-Form Minkowski Sum Approximations for Efficient Optimization-Based Collision Avoidance
,”
2022 American Control Conference (ACC)
,
Atlanta, GA
,
June 8–10
, pp.
3857
3864
.
28.
Kim
,
D.
,
Carballo
,
D.
,
Di Carlo
,
J.
,
Katz
,
B.
,
Bledt
,
G.
,
Lim
,
B.
, and
Kim
,
S.
,
2020
, “
Vision Aided Dynamic Exploration of Unstructured Terrain With a Small-Scale Quadruped Robot
,”
2020 IEEE International Conference on Robotics and Automation (ICRA)
,
Paris, France
,
May 31–Aug. 31
, .pp.
2464
2470
.
29.
Marsden
,
J. E.
, and
West
,
M.
,
2001
, “
Discrete Mechanics and Variational Integrators
,”
Acta Numer.
,
10
, pp.
357
514
.
30.
Li
,
Y.
,
Wu
,
B.
, and
Leok
,
M.
,
2017
, “
Spectral-Collocation Variational Integrators
,”
J. Comput. Phys.
,
332
, pp.
83
98
.
31.
Li
,
Y.
,
Wu
,
B.
, and
Leok
,
M.
,
2018
, “
Construction and Comparison of Multidimensional Spectral Variational Integrators and Spectral Collocation Methods
,”
Appl. Numer. Math.
,
132
, pp.
35
50
.
32.
Todorov
,
E.
,
Erez
,
T.
, and
Tassa
,
Y.
,
2012
, “
Mujoco: A Physics Engine for Model-Based Control
,” 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
5026
5033
.
33.
Coumans
,
E.
,
2015
, “
Bullet Physics Simulation
,”
SIGGRAPH 15
,
New York, NY
,
July 1
.
34.
Lee
,
J.
,
Grey
,
M. X.
,
Ha
,
S.
,
Kunz
,
T.
,
Jain
,
S.
,
Ye
,
Y.
,
Srinivasa
,
S. S.
,
Stilman
,
M.
, and
Liu
,
C. K.
,
2018
, “
DART: Dynamic Animation and Robotics Toolkit
,”
J. Open Source Softw.
,
3
(
22
), p.
500
.
35.
Ruan
,
S.
, and
Chirikjian
,
G. S.
,
2022
, “
Closed-Form Minkowski Sums of Convex Bodies With Smooth Positively Curved Boundaries
,”
Comput. Aided Des.
,
143
, p.
103133
.
36.
Lutz
,
M.
, and
Meurer
,
T.
,
2021
, “
Efficient Formulation of Collision Avoidance Constraints in Optimization Based Trajectory Planning and Control
,”
2021 IEEE Conference on Control Technology and Applications (CCTA)
,
San Diego, CA
,
Aug. 8–11
, pp.
228
233
.
37.
Alamdari
,
A.
, and
Krovi
,
V. N.
,
2016
, “
Design of Articulated Leg-Wheel Subsystem by Kinetostatic Optimization
,”
Mech. Mach. Theory
,
100
, pp.
222
234
.
You do not currently have access to this content.