Abstract

Attaining multidimensional movements, such as cruising, diving, and turning, is a crucial challenge in the development of bionic robotic fish. When only focusing on caudal fin movements, the caudal fin of a tuna generates significant lateral and propulsive forces and weak lift, while in contrast, the caudal fin of a dolphin generates significant lift and propulsive forces and weak lateral forces. The paper introduces a novel caudal fin oscillation mode for the hemispherical space, which extends the caudal fin oscillation features observed in tuna and dolphin to a broader range of organisms. First, we presented the concept of hemispherical space caudal fin oscillation mode, and demonstrated the principle of lift distribution through theoretical calculations. Moreover, we detailed the force distribution obtained by the robotic fish under different caudal fin oscillation modes through numerical simulations. Finally, we experimentally validated the feasibility of the hemispherical space caudal fin oscillation mode. The results indicate that by modifying the oscillation mode of the caudal fin in bionic robotic fish, it is possible to distribute the lift generated by the fin movement to various forces that aid in achieving multidimensional movement, including propulsive, lateral, and lift forces.

References

1.
Sfakiotakis
,
M.
,
Lane
,
D. M.
, and
Davies
,
J. B. C.
,
1999
, “
Review of Fish Swimming Modes for Aquatic Locomotion
,”
IEEE J. Ocean. Eng.
,
24
(
2
), pp.
237
252
.
2.
Webb
,
P. W.
,
2005
, “
Stability and Maneuverability
,”
Fish Physiol.
,
23
, pp.
281
332
.
3.
Webb
,
P. W.
,
1984
, “
Body Form, Locomotion and Foraging in Aquatic Vertebrates
,”
Am. Zool.
,
24
(
1
), pp.
107
120
.
4.
Liao
,
P.
,
Zhang
,
S.
, and
Sun
,
D.
,
2018
, “
A Dual Caudal-Fin Miniature Robotic Fish With an Integrated Oscillation and Jet Propulsive Mechanism
,”
Bioinsp. Biomim.
,
13
(
3
), p.
036007
.
5.
Low
,
K. H.
,
2009
, “
Modelling and Parametric Study of Modular Undulating Fin Rays for Fish Robots
,”
Mech. Mach. Theory
,
44
(
3
), pp.
615
632
.
6.
Bai
,
X. J.
,
Shang
,
J. Z.
,
Luo
,
Z. R.
,
Jiang
,
T.
, and
Yin
,
Q.
,
2022
, “
Development of Amphibious Biomimetic Robots
,”
J. Zhejiang Univ. Sci. A
,
23
(
3
), pp.
157
187
.
7.
Yong
,
Z.
,
Li
,
Z.
, and
Du
,
R.
,
2017
, “
A Novel Robot Fish With Wire-Driven Active Body and Compliant Tail
,”
IEEE/ASME Trans. Mechatron.
,
22
(
4
), pp.
1633
1643
.
8.
Chen
,
D.
,
Wu
,
Z.
,
Dong
,
H.
,
Tan
,
M.
, and
Yu
,
J.
,
2020
, “
Exploration of Swimming Performance for a Biomimetic Multi-joint Robotic Fish With a Compliant Passive Joint
,”
Bioinsp. Biomim.
,
16
(
2
), p.
026007
.
9.
Shuxiang
,
G.
,
Fukuda
,
T.
, and
Asaka
,
K.
,
2003
, “
A New Type of Fish-Like Underwater Microrobot
,”
IEEE/ASME Trans. Mechatron.
,
8
(
1
), pp.
136
141
.
10.
Strefling
,
P. C.
,
Hellum
,
A. M.
, and
Mukherjee
,
R.
,
2011
, “
Modeling, Simulation, and Performance of a Synergistically Propelled Ichthyoid
,”
IEEE/ASME Trans. Mechatron.
,
17
(
1
), pp.
36
45
.
11.
Liu
,
B.
,
Yang
,
Y.
,
Qin
,
F.
, and
Zhang
,
S.
,
2015
, “
Performance Study on a Novel Variable Area Robotic Fin
,”
Mechatronics
,
32
, pp.
59
66
.
12.
Ou
,
X.
,
Boquan
,
L.
, and
Qin
,
Y.
,
2016
, “
Study on Multi-propulsion Mode Movements Simulation of Multi-fins Bionic Propeller (in Chinese)
,”
Mach. Tool Hydraul.
,
28
(
1
), pp.
121
128
.
13.
Suebsaiprom
,
P.
, and
Lin
,
C. L.
,
2012
, “
Fish-Tail Modeling for Fish Robot
,”
2012 International Symposium on Computer, Consumer and Control
,
Taichung, Taiwan
,
June 4–6
, pp.
548
551
.
14.
Liang
,
J.
,
Wang
,
T.
, and
Wen
,
L.
,
2011
, “
Development of a Two-Joint Robotic Fish for Real-World Exploration
,”
J. Field Rob.
,
28
(
1
), pp.
70
79
.
15.
Houghton
,
E. L.
, and
Carpenter
,
P. W.
,
2003
,
Aerodynamics for Engineering Students
,
Elsevier
,
New York
.
16.
Meng
,
Q. J.
, and
Wan
,
D. C.
,
2016
, “
Numerical Simulations of Viscous Flow Around the Obliquely Towed KVLCC2M Model in Deep and Shallow Water
,”
J. Hydrodyn.
,
28
(
3
), pp.
506
518
.
17.
Khalid
,
M. S. U.
,
Akhtar
,
I.
, and
Dong
,
H.
,
2016
, “
Hydrodynamics of a Tandem Fish School With Asynchronous Undulation of Individuals
,”
J. Fluids Struct.
,
66
, pp.
19
35
.
18.
Yan-ping
,
S. U.
,
Mao-fa
,
G. O. N. G.
,
Bin
,
A. N.
,
Jian-yu
,
Z. H. A. N. G.
, and
Xu-jieet
,
Z. H. A. O.
,
2014
, “
Design of a Tilt Angle Measurement System Based on ADXL345 Sensor
,”
J. Meas. Sci. Instrum.
,
5
(
2
), pp.
19
22
.
You do not currently have access to this content.