Abstract

Multiple mobile assemblies have been created based on two-dimensional tessellations of linkages for deployable structures. However, few three-dimensional tessellations of linkages have been created, especially mobile assemblies with bifurcation. Here, we proposed four types of mobile assemblies of kaleidocycles, a special type of threefold-symmetric Bricard linkages, based on cubic cellulation and symmetry. Kinematic analysis of them is carried out based on the matrix method and numerical method. Two assemblies have bifurcations with two motion paths following cuboid symmetry and tetrahedral symmetry, respectively. Meanwhile, the other two have one motion path with a single degree-of-freedom. The designing process facilitates the creation of new mobile assemblies under symmetry, and the four assemblies have the potential application for designing metamaterials.

References

1.
Phillips
,
J.
,
1984
,
Freedom in Machinery: Introducing Screw Theory
,
Cambridge University Press
,
Cambridge, UK
.
2.
Sarrus
,
P. T.
,
1853
, “
Note sur la Transformation des Mouvements Rectilignes Alternatifs, en Mouvements Circulaires; et Reciproquement
,”
Acad. Sci.
,
36
, pp.
1036
1038
.
3.
Bennett
,
G. T.
,
1903
, “
A new Mechanism
,”
Engineering
,
76
(
12
), pp.
777
778
.
4.
Bennett
,
G. T.
,
1914
, “
The Skew Isogram Mechanism
,”
Proc. London Math. Soc.
,
13
(
1
), pp.
151
173
.
5.
Myard
,
F. E.
,
1931
, “
Contribution à la Géométrie des Systèmes Articulés
,” Bull. Soci. Math. France
,
59
, pp.
183
210
.
6.
Goldberg
,
M.
,
1943
, “
New Five-bar and six-bar Linkages in Three Dimensions
,”
Trans. ASME
,
65
, pp.
649
661
.
7.
Grodzinski
,
P.
, and
M'Ewen
,
E.
,
1954
, “
Link Mechanisms in Modern Kinematics
,”
Proc. Inst. Mech. Eng.
,
168
(
1
), pp.
877
896
.
8.
Bricard
,
R.
,
1897
, “
Mémoire sur la Théorie de L'octaèdre Articulé
,”
J. Math. Pures Appl.
,
3
, pp.
113
148
.
9.
Bricard
,
R.
,
1927
,
Lecons de Cinematique, Tome II Cinematique Appliquee
,
Gauthier-Villars
,
Paris, France
, pp.
7
12
.
10.
Baker
,
J. E.
,
1980
, “
An Analysis of the Bricard Linkages
,”
Mech. Mach. Theory
,
15
(
4
), pp.
267
286
.
11.
Bennett
,
G. T.
,
1905
, “
LXXVII. The Parallel Motion of Sarrus and Some Allied Mechanisms
,”
London Edinburgh Dublin Philos. Mag. J. Sci.
,
9
(
54
), pp.
803
810
.
12.
Hsu
,
K. L.
, and
Ting
,
K. L.
,
2018
, “
Overconstrained Mechanisms Derived From RPRP Loops
,”
ASME J. Mech. Des.
,
140
(
6
), p.
062301
.
13.
Chen
,
Y.
, and
You
,
Z.
,
2009
, “
Two-fold Symmetrical 6R Foldable Frame and its Bifurcations
,”
Int. J. Solids Struct.
,
46
(
25–26
), pp.
4504
4514
.
14.
Chen
,
Y.
, and
Chai
,
W. H.
,
2011
, “
Bifurcation of a Special Line and Plane Symmetric Bricard Linkage
,”
Mech. Mach. Theory
,
46
(
4
), pp.
515
533
.
15.
Chen
,
Y.
,
You
,
Z.
, and
Tarnai
,
T.
,
2005
, “
Threefold-symmetric Bricard Linkages for Deployable Structures
,”
Int. J. Solids Struct.
,
42
(
8
), pp.
2287
2301
.
16.
Chen
,
Y.
, and
Baker
,
J. E.
,
2005
, “
Using a Bennett Linkage as a Connector Between Other Bennett Loops
,”
Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn.
,
219
(
2
), pp.
177
185
.
17.
You
,
Z.
, and
Chen
,
Y.
,
2005
, “
Mobile Assemblies Based on the Bennett Linkage
,”
Proc. R. Soc. A
,
461
(
2056
), pp.
1229
1245
.
18.
Chen
,
Y.
, and
You
,
Z.
,
2008
, “
On Mobile Assemblies of Bennett Linkages
,”
Proc. R. Soc. A
,
464
(
2093
), pp.
1275
1293
.
19.
Song
,
X.
,
Deng
,
Z.
,
Guo
,
H.
,
Liu
,
R.
,
Li
,
L.
, and
Liu
,
R.
,
2017
, “
Networking of Bennett Linkages and its Application on Deployable Parabolic Cylindrical Antenna
,”
Mech. Mach. Theory
,
109
, pp.
95
125
.
20.
Lu
,
S.
,
Zlatanov
,
D.
, and
Ding
,
X.
,
2017
, “
Approximation of Cylindrical Surfaces with Deployable Bennett Networks
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
021001
.
21.
Liu
,
S. Y.
, and
Chen
,
Y.
,
2009
, “
Myard Linkage and its Mobile Assemblies
,”
Mech. Mach. Theory
,
44
(
10
), pp.
1950
1963
.
22.
Qi
,
X.
,
Deng
,
Z.
,
Li
,
B.
,
Liu
,
R.
, and
Guo
,
H.
,
2013
, “
Design and Optimization of Large Deployable Mechanism Constructed by Myard Linkages
,”
CEAS Space J.
,
5
(
3–4
), pp.
147
155
.
23.
Atarer
,
F.
,
Korkmaz
,
K.
, and
Kiper
,
G.
,
2017
, “
Design Alternatives of Network of Altmann Linkages
,”
Int. J. Comput. Meth. Exp. Meas.
,
5
(
4
), pp.
495
503
.
24.
You
,
Z.
, and
Chen
,
Y.
,
2014
,
Motion Structures: Deployable Structural Assemblies of Mechanisms
,
Spon Press
,
New York
.
25.
Huang
,
H.
,
Li
,
B.
,
Zhu
,
J.
, and
Qi
,
X.
,
2016
, “
A new Family of Bricard-Derived Deployable Mechanisms
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
034503
.
26.
Chen
,
Y.
,
Peng
,
R.
, and
You
,
Z.
,
2015
, “
Origami of Thick Panels
,”
Science
,
349
(
6246
), pp.
396
400
.
27.
Chen
,
Y.
,
Feng
,
H.
,
Ma
,
J.
,
Peng
,
R.
, and
You
,
Z.
,
2016
, “
Symmetric Waterbomb Origami
,”
Proc. R. Soc. A
,
472
(
2190
), p.
20150846
.
28.
Lu
,
S.
,
Zlatanov
,
D.
,
Ding
,
X.
, and
Molfino
,
R.
,
2014
, “
A New Family of Deployable Mechanisms Based on the Hoekens Linkage
,”
Mech. Mach. Theory
,
73
, pp.
130
153
.
29.
Hoberman
,
C.
,
2002
,
“Connections to Make Foldable Structures,” US Patent, EP20010300695
.
30.
Baker
,
J. E.
,
1995
, “
On Bricard's Doubly Collapsible Octahedron and Its Planar, Spherical and Skew Counterparts
,”
J. Franklin Inst.
,
332
(
6
), pp.
657
679
.
31.
Li
,
J.
,
Zhang
,
X.
,
An
,
S.
,
Zhu
,
Z.
,
Deng
,
Z.
, and
You
,
Z.
,
2022
, “
Kirigami-inspired Foldable 3D Cellular Structures With a Single Degree of Freedom
,”
Int. J. Solids Struct.
,
244–245
, p.
111587
.
32.
Wei
,
G.
,
Chen
,
Y.
, and
Dai
,
J. S.
,
2014
, “
Synthesis, Mobility, and Multifurcation of Deployable Polyhedral Mechanisms With Radially Reciprocating Motion
,”
ASME J. Mech. Des.
,
136
(
9
), p.
091003
.
33.
Yang
,
F.
, and
Chen
,
Y.
,
2018
, “
One-DOF Transformation Between Tetrahedron and Truncated Tetrahedron
,”
Mech. Mach. Theory
,
121
, pp.
169
183
.
34.
Chen
,
Y.
,
Yang
,
F.
, and
You
,
Z.
,
2018
, “
Transformation of Polyhedrons
,”
Int. J. Solids Struct.
,
138
, pp.
193
204
.
35.
Yang
,
F.
,
You
,
Z.
, and
Chen
,
Y.
,
2020
, “
Mobile Assembly of Two Bennett Linkages and Its Application to Transformation Between Cuboctahedron and Octahedron
,”
Mech. Mach. Theory
,
145
, p.
103698
.
36.
Xiu
,
H.
,
Wang
,
K.
,
Wei
,
G.
,
Ren
,
L.
, and
Dai
,
J.
,
2018
, “
A Sarrus-Like Overconstrained Eight-Bar Linkage and Its Associated Fulleroid-Like Platonic Deployable Mechanisms
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
234
(
1
), pp.
241
262
.
37.
Wang
,
J.
, and
Kong
,
X.
,
2018
, “
Deployable Polyhedron Mechanisms Constructed by Connecting Spatial Single-Loop Linkages of Different Types and/or in Different Sizes Using S Joints
,”
Mech. Mach. Theory
,
124
, pp.
211
225
.
38.
Wang
,
J.
, and
Kong
,
X.
,
2019
, “
A Novel Method for Constructing Multimode Deployable Polyhedron Mechanisms Using Symmetric Spatial Compositional Units
,”
ASME J. Mech. Rob.
,
11
(
2
), p.
020907
.
39.
Gu
,
Y.
,
Wei
,
G.
, and
Chen
,
Y.
,
2021
, “
Thick-Panel Origami Cube
,”
Mech. Mach. Theory
,
164
, p.
104411
.
40.
Yang
,
T.
,
Li
,
P.
,
Shen
,
Y.
, and
Liu
,
Y.
,
2021
, “
Deployable Scissor Mechanisms Derived From Non-Crossing Angulated Structural Elements
,”
Mech. Mach. Theory
,
165
, p.
104434
.
41.
Wang
,
J.
,
Kong
,
X.
, and
Yu
,
J.
,
2022
, “
Design of Deployable Mechanisms Based on Wren Parallel Mechanism Units
,”
ASME J. Mech. Des.
,
144
(
6
), p.
063302
.
42.
Yang
,
Y.
,
Maiolino
,
P.
,
Chen
,
Y.
, and
You
,
Z.
,
2021
, “
Three-Dimensional Kinematic Metamaterial with Tuneable Directional Permeability
,”
arXiv preprint
. https://arxiv.org/abs/2102.08821
43.
Yang
,
Y.
, and
You
,
Z.
,
2018
, “A Mdular Origami-Inspired Mechanical Metamaterial,”
Origami 7, Volume 3: Engineering One
,
M.
Bolitho
,
R. J.
Lang
,
and Z.
You
, eds.,
Tarquin
,
St Albans, UK
, pp.
715
730
.
44.
Hartenberg
,
R. S.
, and
Denavit
,
J.
,
1955
, “
A Kinematic Notation for Lower Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
,
77
(
2
), pp.
215
221
.
45.
Kumar
,
P.
, and
Pellegrino
,
S.
,
2000
, “
Computation of Kinematic Paths and Bifurcation Points
,”
Int. J. Solids Struct.
,
37
(
46–47
), pp.
7003
7027
.
You do not currently have access to this content.