Abstract

In this paper, two models were proposed to estimate the positioning error of a 3-translational prismatic–universal–universal parallel kinematic mechanism. The two models were a kinematic error model (KEM) and a backpropagation neural network (BPNN) model, respectively. The KEM was constructed by incorporating three translational joint errors into the ideal kinematic model to describe the errors that occur during machining or assembly. Additionally, a sensitivity analysis was presented for each error parameter. The BPNN model was constructed to establish the relationship between the position of the end effector, the posture of each link, and the positioning error of the end effector using a neural network approach. Moreover, a hybrid method was proposed to decrease the final estimated residual error. The average errors of the KEM and BPNN models were 35% and 15% of the original error, respectively. The hybrid model reduced the final average error to less than 10% of its original value.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Terrier
,
M.
,
Dugas
,
A.
, and
Hascoët
,
J.-Y.
,
2004
, “
Qualification of Parallel Kinematics Machines in High-Speed Milling on Free Form Surfaces
,”
Int. J. Mach. Tools Manuf.
,
44
(
7–8
), pp.
865
877
.
2.
Weck
,
M.
, and
Staimer
,
D.
,
2002
, “
Parallel Kinematic Machine Tools—Current State and Future Potentials
,”
CIRP Ann.
,
51
(
2
), pp.
671
683
.
3.
Tsai
,
L. W.
,
1999
, “
Systematic Enumeration of Parallel Manipulators
,” Parallel Kinematic Machines. Advanced Manufacturing, Springer, London, pp.
33
-
49
.
4.
Wang
,
L.
,
Xu
,
H.
,
Guan
,
L.
, and
Zhi
,
Y.
,
2016
, “
A Novel 3-PUU Parallel Mechanism and Its Kinematic Issues
,”
Rob. Comput.-Integr. Manuf.
,
42
, pp.
86
102
.
5.
Zhao
,
C.
,
Chen
,
Z.
,
Li
,
Y.
, and
Huang
,
Z.
,
2020
, “
Motion Characteristics Analysis of a Novel 2R1T 3-UPU Parallel Mechanism
,”
ASME J. Mech. Des.
,
142
(
1
), p.
012302
.
6.
Zhang
,
F.
,
Shang
,
W.
,
Li
,
G.
, and
Cong
,
S.
,
2021
, “
Calibration of Geometric Parameters and Error Compensation of Non-Geometric Parameters for Cable-Driven Parallel Robots
,”
Mechatronics
,
77
, p.
102595
.
7.
Li
,
Y.
, and
Xu
,
Q.
,
2008
, “
Stiffness Analysis for a 3-PUU Parallel Kinematic Machine
,”
Mech. Mach. Theory
,
43
(
2
), pp.
186
200
.
8.
Chebbi
,
A.-H.
,
Affi
,
Z.
, and
Romdhane
,
L.
,
2009
, “
Prediction of the Pose Errors Produced by Joints Clearance for a 3-UPU Parallel Robot
,”
Mech. Mach. Theory
,
44
(
9
), pp.
1768
1783
.
9.
Shan
,
X.
, and
Cheng
,
G.
,
2019
, “
Structural Error Identification and Kinematic Accuracy Analysis of a 2(3PUS + S) Parallel Manipulator
,”
Measurement
,
140
, pp.
22
28
.
10.
Zhao
,
D.
,
Bi
,
Y.
, and
Ke
,
Y.
,
2017
, “
An Efficient Error Compensation Method for Coordinated CNC Five-Axis Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
123
, pp.
105
115
.
11.
Tian
,
W.
,
Yin
,
F.
,
Liu
,
H.
,
Li
,
J.
,
Li
,
Q.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
,
2016
, “
Kinematic Calibration of a 3-DOF Spindle Head Using a Double Ball Bar
,”
Mech. Mach. Theory
,
102
, pp.
167
178
.
12.
Sun
,
T.
,
Zhai
,
Y.
,
Song
,
Y.
, and
Zhang
,
J.
,
2016
, “
Kinematic Calibration of a 3-DoF Rotational Parallel Manipulator Using Laser Tracker
,”
Rob. Comput.-Integr. Manuf.
,
41
, pp.
78
91
.
13.
Wang
,
J.
, and
Masory
,
O.
,
1993
, “
On the Accuracy of a Stewart Platform. I. The Effect of Manufacturing Tolerances
,”
Proceedings IEEE International Conference on Robotics and Automation
,
Atlanta, GA
, Vol. 1, pp.
114
120
.
14.
Zhao
,
G.
,
Wang
,
D.
,
Liu
,
L.
,
Guo
,
J.
,
Chen
,
W.
, and
Li
,
H.
,
2020
, “
Positioning Error Compensation for Parallel Mechanism With Two Kinematic Calibration Methods
,”
Chin. J. Aeronaut.
,
33
(
9
), pp.
2472
2489
.
15.
Stock
,
M.
, and
Miller
,
K.
,
2003
, “
Optimal Kinematic Design of Spatial Parallel Manipulators: Application to Linear Delta Robot
,”
ASME J. Mech. Des.
,
125
(
2
), pp.
292
301
.
16.
Abtahi
,
M.
,
Pendar
,
H.
,
Alasty
,
A.
, and
Vossoughi
,
G.
,
2014
, “
Experimental Kinematic Calibration of Parallel Manipulators Using a Relative Position Error Measurement System
,”
Rob. Comput.-Integr. Manuf.
,
26
(
6
), pp.
799
804
.
17.
Wu
,
J. F.
,
Zhang
,
R.
,
Wang
,
R. H.
, and
Yao
,
Y. X.
,
2014
, “
A Systematic Optimization Approach for the Calibration of Parallel Kinematics Machine Tools by a Laser Tracker
,”
Int. J. Mach. Tools Manuf.
,
86
, pp.
1
11
.
18.
He
,
L.
,
Li
,
Q.
,
Zhu
,
X.
, and
Wu
,
C.
,
2018
, “
Kinematic Calibration of a 3-DoF Parallel Manipulator with a Laser Tracker
,”
J. Dyn. Syst. Measur. Control
,
141
, pp.
1
27
.
19.
He
,
Z.
,
Lian
,
B.
, and
Li
,
Q.
,
Zhang
,
Y.
,
Song
,
Y.
,
Yang
,
Y.
, and
Sun
,
T.
,
2020
, “
An Error Identification and Compensation Method of a 6-DoF Parallel Kinematic Machine
,”
IEEE Access
,
8
, pp.
119038
1190047
.
20.
Zaghloul
,
N. A.
, and
Abu Kiefa
,
M. A.
,
2001
, “
Neural Network Solution of Inverse Parameters Used in the Sensitivity-Calibration Analyses of the SWMM Model Simulations
,”
Adv. Eng. Softw.
,
32
(
7
), pp.
587
595
.
21.
Abielmona
,
R.
,
Groza
,
V.
, and
Petriu
,
E.
,
2003
, “
Evolutionary Neural Network-Based Sensor Self-Calibration Scheme Using IEEE 1451 and Wireless Sensor Networks
,”
Proceedings of the 3rd International Workshop on Scientific Use of Submarine Cables and Related Technologies
, Lugano, Switzerland, July 31, pp.
38
43
.
22.
Li
,
B.
,
Tian
,
W.
,
Zhang
,
C.
,
Hua
,
F.
,
Cui
,
G.
, and
Li
,
Y.
,
2022
, “
Positioning Error Compensation of an Industrial Robot Using Neural Networks and Experimental Study
,”
Chin. J. Aeronaut.
,
35
(
2
), pp.
346
360
.
23.
Wang
,
Y.
,
Chen
,
Z.
, and
Kang
,
H. J.
,
2020
, “
Improvement of Heavy Load Robot Positioning Accuracy by Combining a Model-Based Identification for Geometric Parameters and an Optimized Neural Network for the Compensation of Nongeometric Errors
,”
Complexity
, p. 5896813.
24.
Zhang
,
D.
, and
Gao
,
Z.
,
2012
, “
Optimal Kinematic Calibration of Parallel Manipulators With Pseudoerror Theory and Cooperative Coevolutionary Network
,”
IEEE Trans. Ind. Electron.
,
59
(
8
), pp.
3221
3231
.
25.
San
,
H.
,
Chen
,
J.
,
Zhao
,
J.
,
Li
,
P.
, and
Lei
,
J.
,
2018
, “
A 3-DOF Parallel Mechanism Sensitivity Analysis and Parameter Sensitivity Analysis
,”
Innov. Techn. Appl. Modell., Identif. Control
,
467
, pp.
427
441
.
You do not currently have access to this content.