Abstract

Soft robots can undergo large elastic deformations and adapt to complex shapes. However, they lack the structural strength to withstand external loads due to the intrinsic compliance of fabrication materials (silicone or rubber). In this paper, we present a novel stiffness modulation approach that controls the robot’s stiffness on-demand without permanently affecting the intrinsic compliance of the elastomeric body. Inspired by concentric tube robots, this approach uses a Nitinol tube as the backbone, which can be slid in and out of the soft robot body to achieve robot pose or stiffness modulation. To validate the proposed idea, we fabricated a tendon-driven concentric tube (TDCT) soft robot and developed the model based on Cosserat rod theory. The model is validated in different scenarios by varying the joint-space tendon input and task-space external contact force. Experimental results indicate that the model is capable of estimating the shape of the TDCT soft robot with an average root-mean-square error (RMSE) of 0.90 (0.56% of total length) mm and average tip error of 1.49 (0.93% of total length) mm. Simulation studies demonstrate that the Nitinol backbone insertion can enhance the kinematic workspace and reduce the compliance of the TDCT soft robot by 57.7%. Two case studies (object manipulation and soft laparoscopic photodynamic therapy) are presented to demonstrate the potential application of the proposed design.

References

1.
Tse
,
Z. T. H.
,
Chen
,
Y.
,
Hovet
,
S.
,
Ren
,
H.
,
Cleary
,
K.
,
Xu
,
S.
,
Wood
,
B.
, and
Monfaredi
,
R.
,
2018
, “
Soft Robotics in Medical Applications
,”
J. Med. Rob. Res.
,
3
(
3–4
), p.
1841006
.
2.
Galloway
,
K. C.
,
Chen
,
Y.
,
Templeton
,
E.
,
Rife
,
B.
,
Godage
,
I. S.
, and
Barth
,
E. J.
,
2019
, “
Fiber Optic Shape Sensing for Soft Robotics
,”
Soft Rob.
,
6
(
5
), pp.
671
684
.
3.
Manti
,
M.
,
Cacucciolo
,
V.
, and
Cianchetti
,
M.
,
2016
, “
Stiffening in Soft Robotics: A Review of the State of the Art
,”
IEEE Rob. Autom. Mag.
,
23
(
3
), pp.
93
106
.
4.
Langer
,
M.
,
Amanov
,
E.
, and
Burgner-Kahrs
,
J.
,
2018
, “
Stiffening Sheaths for Continuum Robots
,”
Soft Rob.
,
5
(
3
), pp.
291
303
.
5.
Yang
,
Y.
,
Li
,
Y.
, and
Chen
,
Y.
,
2018
, “
Principles and Methods for Stiffness Modulation in Soft Robot Design and Development
,”
Bio-Des. Manuf.
,
1
(
1
), pp.
14
25
.
6.
Al-Rubaiai
,
M.
,
Pinto
,
T.
,
Qian
,
C.
, and
Tan
,
X.
,
2019
, “
Soft Actuators With Stiffness and Shape Modulation Using 3d-Printed Conductive Polylactic Acid Material
,”
Soft Rob.
,
6
(
3
), pp.
318
332
.
7.
Zhang
,
Y. F.
,
Zhang
,
N. B.
,
Hingorani
,
H.
,
Ding
,
N. Y.
,
Wang
,
D.
,
Yuan
,
C.
,
Zhang
,
B.
,
Gu
,
G. Y.
, and
Ge
,
Q.
,
2019
, “
Fast-Response, Stiffness-Tunable Soft Actuator by Hybrid Multimaterial 3d Printing
,”
Adv. Funct. Mater.
,
29
(
15
), p.
9
.
8.
Yang
,
Y.
,
Chen
,
Y.
,
Li
,
Y.
,
Chen
,
M. Z.
, and
Wei
,
Y.
,
2017
, “
Bioinspired Robotic Fingers Based on Pneumatic Actuator and 3d Printing of Smart Material
,”
Soft Rob.
,
4
(
2
), pp.
147
162
.
9.
Yang
,
Y.
,
Chen
,
Y.
,
Li
,
Y.
,
Wang
,
Z.
, and
Li
,
Y.
,
2017
, “
Novel Variable-Stiffness Robotic Fingers With Built-In Position Feedback
,”
Soft Rob.
,
4
(
4
), pp.
338
352
.
10.
Firouzeh
,
A.
,
Salerno
,
M.
, and
Paik
,
J.
,
2017
, “
Stiffness Control With Shape Memory Polymer in Underactuated Robotic Origamis
,”
IEEE Trans. Rob.
,
33
(
4
), pp.
765
777
.
11.
Wang
,
W.
, and
Ahn
,
S.-H.
,
2017
, “
Shape Memory Alloy-Based Soft Gripper With Variable Stiffness for Compliant and Effective Grasping
,”
Soft Rob.
,
4
(
4
), pp.
379
389
.
12.
Yuen
,
M. C.
,
Bilodeau
,
R. A.
, and
Kramer
,
R. K.
,
2016
, “
Active Variable Stiffness Fibers for Multifunctional Robotic Fabrics
,”
IEEE Rob. Autom. Lett.
,
1
(
2
), pp.
708
715
.
13.
Wang
,
J. C.
,
Wang
,
S. X.
,
Li
,
J. H.
,
Ren
,
X. Y.
, and
Briggs
,
R. M.
,
2018
, “
Development of a Novel Robotic Platform With Controllable Stiffness Manipulation Arms for Laparoendoscopic Single-Site Surgery (LESS)
,”
Int. J. Med. Rob. Comput. Assist. Surg.
,
14
(
1
), p.
16
.
14.
Schubert
,
B. E.
, and
Floreano
,
D.
,
2013
, “
Variable Stiffness Material Based on Rigid Low-Melting-Point-Alloy Microstructures Embedded in Soft Poly (Dimethylsiloxane)(PDMS)
,”
RSC Adv.
,
3
(
46
), pp.
24671
24679
.
15.
Shintake
,
J.
,
Schubert
,
B.
,
Rosset
,
S.
,
Shea
,
H.
, and
Floreano
,
D.
,
2015
, “
Variable Stiffness Actuator for Soft Robotics Using Dielectric Elastomer and Low-Melting-Point Alloy
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Dec. 17
,
IEEE
, pp.
1097
1102
.
16.
Hao
,
Y.
,
Wang
,
T.
, and
Wen
,
L.
,
2017
, “
A Programmable Mechanical Freedom and Variable Stiffness Soft Actuator With Low Melting Point Alloy
,”
International Conference on Intelligent Robotics and Applications
,
Wuhan, China
,
Aug. 6
,
Springer
, pp.
151
161
.
17.
Nakai
,
H.
,
Kuniyoshi
,
Y.
,
Inaba
,
M.
, and
Inoue
,
H.
,
2002
, “
Metamorphic Robot Made of Low Melting Point Alloy
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Lausanne, Switzerland
,
Dec. 10
, Vol.
2
,
IEEE
, pp.
2025
2030
.
18.
Cheng
,
N. G.
,
Gopinath
,
A.
,
Wang
,
L.
,
Iagnemma
,
K.
, and
Hosoi
,
A. E.
,
2014
, “
Thermally Tunable, Self-Healing Composites for Soft Robotic Applications
,”
Macromol. Mater. Eng.
,
299
(
11
), pp.
1279
1284
.
19.
Pettersson
,
A.
,
Davis
,
S.
,
Gray
,
J. O.
,
Dodd
,
T. J.
, and
Ohlsson
,
T.
,
2010
, “
Design of a Magnetorheological Robot Gripper for Handling of Delicate Food Products With Varying Shapes
,”
J. Food Eng.
,
98
(
3
), pp.
332
338
.
20.
Majidi
,
C.
, and
Wood
,
R. J.
,
2010
, “
Tunable Elastic Stiffness With Microconfined Magnetorheological Domains at Low Magnetic Field
,”
Appl. Phys. Lett.
,
97
(
16
), p.
164104
.
21.
Tonazzini
,
A.
,
Sadeghi
,
A.
, and
Mazzolai
,
B.
,
2016
, “
Electrorheological Valves for Flexible Fluidic Actuators
,”
Soft Rob.
,
3
(
1
), pp.
34
41
.
22.
Song
,
B.-K.
,
Yoon
,
J.-Y.
,
Hong
,
S.-W.
, and
Choi
,
S.-B.
,
2020
, “
Field-Dependent Stiffness of a Soft Structure Fabricated From Magnetic-Responsive Materials: Magnetorheological Elastomer and Fluid
,”
Materials
,
13
(
4
), p.
953
.
23.
Wei
,
Y.
,
Chen
,
Y.
,
Ren
,
T.
,
Chen
,
Q.
,
Yan
,
C.
,
Yang
,
Y.
, and
Li
,
Y.
,
2016
, “
A Novel, Variable Stiffness Robotic Gripper Based on Integrated Soft Actuating and Particle Jamming
,”
Soft Rob.
,
3
(
3
), pp.
134
143
.
24.
Steltz
,
E.
,
Mozeika
,
A.
,
Rodenberg
,
N.
,
Brown
,
E.
, and
Jaeger
,
H. M.
,
2009
, “
JSEL: Jamming Skin Enabled Locomotion
,”
2009 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
St. Louis, MO
,
Dec. 15
,
IEEE
, pp.
5672
5677
.
25.
Li
,
Y.
,
Chen
,
Y.
,
Yang
,
Y.
, and
Wei
,
Y.
,
2017
, “
Passive Particle Jamming and Its Stiffening of Soft Robotic Grippers
,”
IEEE Trans. Rob.
,
33
(
2
), pp.
446
455
.
26.
Kim
,
Y.-J.
,
Cheng
,
S.
,
Kim
,
S.
, and
Iagnemma
,
K.
,
2013
, “
A Novel Layer Jamming Mechanism With Tunable Stiffness Capability for Minimally Invasive Surgery
,”
IEEE Trans. Rob.
,
29
(
4
), pp.
1031
1042
.
27.
Wall
,
V.
,
Deimel
,
R.
, and
Brock
,
O.
,
2015
, “
Selective Stiffening of Soft Actuators Based on Jamming
,”
2015 IEEE International Conference on Robotics and Automation (ICRA)
,
IEEE
, pp.
252
257
.
28.
Robertson
,
M. A.
, and
Paik
,
J.
,
2017
, “
New Soft Robots Really Suck: Vacuum-Powered Systems Empower Diverse Capabilities
,”
Sci. Rob.
,
2
(
9
), p.
eaan6357
.
29.
Jiang
,
A.
,
Ranzani
,
T.
,
Gerboni
,
G.
,
Lekstutyte
,
L.
,
Althoefer
,
K.
,
Dasgupta
,
P.
, and
Nanayakkara
,
T.
,
2014
, “
Robotic Granular Jamming: Does the Membrane Matter
?”
Soft Rob.
,
1
(
3
), pp.
192
201
.
30.
English
,
C.
, and
Russell
,
D.
,
1999
, “
Implementation of Variable Joint Stiffness Through Antagonistic Actuation Using Rolamite Springs
,”
Mech. Mach. Theory
,
34
(
1
), pp.
27
40
.
31.
Ansari
,
Y.
,
Manti
,
M.
,
Falotico
,
E.
,
Cianchetti
,
M.
, and
Laschi
,
C.
,
2017
, “
Multiobjective Optimization for Stiffness and Position Control in a Soft Robot Arm Module
,”
IEEE Rob. Autom. Lett.
,
3
(
1
), pp.
108
115
.
32.
Fathi
,
J.
,
Vrielink
,
T. J. O.
,
Runciman
,
M. S.
, and
Mylonas
,
G. P.
,
2019
, “
A Deployable Soft Robotic Arm With Stiffness Modulation for Assistive Living Applications
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
,
Aug. 12
,
IEEE
, pp.
1479
1485
.
33.
Stilli
,
A.
,
Wurdemann
,
H. A.
, and
Althoefer
,
K.
,
2014
, “
Shrinkable, Stiffness-Controllable Soft Manipulator Based on a Bio-Inspired Antagonistic Actuation Principle
,”
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Chicago, IL
,
Nov. 6
,
IEEE
, pp.
2476
2481
.
34.
Dupont
,
P. E.
,
Lock
,
J.
,
Itkowitz
,
B.
, and
Butler
,
E.
,
2009
, “
Design and Control of Concentric-Tube Robots
,”
IEEE Trans. Rob.
,
26
(
2
), pp.
209
225
.
35.
Rucker
,
D. C.
,
Jones
,
B. A.
, and
Webster III
,
R. J.
,
2010
, “
A Geometrically Exact Model for Externally Loaded Concentric-Tube Continuum Robots
,”
IEEE Trans. Rob.
,
26
(
5
), p.
769
.
36.
Godage
,
I. S.
,
Medrano-Cerda
,
G. A.
,
Branson
,
D. T.
,
Guglielmino
,
E.
, and
Caldwell
,
D. G.
,
2016
, “
Dynamics for Variable Length Multisection Continuum Arms
,”
Int. J. Rob. Res.
,
35
(
6
), pp.
695
722
.
37.
Webster III
,
R. J.
, and
Jones
,
B. A.
,
2010
, “
Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review
,”
Int. J. Rob. Res.
,
29
(
13
), pp.
1661
1683
.
38.
Schlagenhauf
,
C.
,
Bauer
,
D.
,
Chang
,
K.-H.
,
King
,
J. P.
,
Moro
,
D.
,
Coros
,
S.
, and
Pollard
,
N.
,
2018
, “
Control of Tendon-Driven Soft Foam Robot Hands
,”
2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)
,
Beijing, China
,
Nov. 9
,
IEEE
, pp.
1
7
.
39.
Trivedi
,
D.
,
Lotfi
,
A.
, and
Rahn
,
C. D.
,
2008
, “
Geometrically Exact Models for Soft Robotic Manipulators
,”
IEEE Trans. Rob.
,
24
(
4
), pp.
773
780
.
40.
Chen
,
Y.
,
Wang
,
L.
,
Galloway
,
K.
,
Godage
,
I.
,
Simaan
,
N.
, and
Barth
,
E.
,
2020
, “
Modal-Based Kinematics and Contact Detection of Soft Robots
,”
Soft Rob.
,
8
(
3
), pp.
298
309
.
41.
Rucker
,
D. C.
, and
Webster
,
R. J.
,
2010
, “
Mechanics of Continuum Robots With External Loading and General Tendon Routing
,”
ISER
,
Naples, Italy
,
Dec. 10
.
42.
Janabi-Sharifi
,
F.
,
Jalali
,
A.
, and
Walker
,
I. D.
,
2021
, “
Cosserat Rod-Based Dynamic Modeling of Tendon-Driven Continuum Robots: A Tutorial
,”
IEEE Access
,
9
, pp.
68703
68719
.
43.
Till
,
J.
,
Aloi
,
V.
,
Riojas
,
K. E.
,
Anderson
,
P. L.
,
Webster III
,
R. J.
, and
Rucker
,
C.
,
2020
, “
A Dynamic Model for Concentric Tube Robots
,”
IEEE Trans. Rob.
,
36
(
6
), pp.
1704
1718
.
44.
Xu
,
K.
, and
Simaan
,
N.
,
2010
, “
Analytic Formulation for Kinematics, Statics, and Shape Restoration of Multibackbone Continuum Robots Via Elliptic Integrals
,”
ASME J. Mech. Rob.
,
2
(
1
), p.
011006
.
45.
Zwillinger
,
D.
, and
Dobrushkin
,
V.
,
1998
,
Handbook of Differential Equations
,
Chapman and Hall/CRC
,
Boca Raton, FL
.
46.
Burgner-Kahrs
,
J.
,
Rucker
,
D. C.
, and
Choset
,
H.
,
2015
, “
Continuum Robots for Medical Applications: A Survey
,”
IEEE Trans. Rob.
,
31
(
6
), pp.
1261
1280
.
47.
Rucker
,
D. C.
, and
Webster
,
R. J.
,
2011
, “
Computing Jacobians and Compliance Matrices for Externally Loaded Continuum Robots
,”
2011 IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 13
,
IEEE
, pp.
945
950
.
48.
Duriez
,
C.
,
Coevoet
,
E.
,
Largilliere
,
F.
,
Morales-Bieze
,
T.
,
Zhang
,
Z.
,
Sanz-Lopez
,
M.
,
Carrez
,
B.
,
Marchal
,
D.
,
Goury
,
O.
, and
Dequidt
,
J.
,
2016
, “
Framework for Online Simulation of Soft Robots With Optimization-Based Inverse Model
,”
2016 IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR)
,
San Francisco, CA
,
Dec. 16
,
IEEE
, pp.
111
118
.
49.
Gravagne
,
I. A.
, and
Walker
,
I. D.
,
2002
, “
Manipulability, Force, and Compliance Analysis for Planar Continuum Manipulators
,”
IEEE Trans. Rob. Autom.
,
18
(
3
), pp.
263
273
.
50.
Walker
,
I.
, and
Gravagne
,
I.
,
2002
, “
Design, Analysis and Experimentation: The Fundamentals of Continuum Robotic Manipulators
,” Clemson University ProQuest Dissertations Publishing, 3057195.
51.
Sauerland
,
S.
,
Agresta
,
F.
,
Bergamaschi
,
R.
,
Borzellino
,
G.
,
Budzynski
,
A.
,
Champault
,
G.
,
Fingerhut
,
A.
,
Isla
,
A.
,
Johansson
,
M.
,
Lundorff
,
P.
, and
Navez
,
B.
,
2006
, “
Laparoscopy for Abdominal Emergencies
,”
Surg. Endosc. Other Intervent. Tech.
,
20
(
1
), pp.
14
29
.
52.
Li
,
Y.
,
Liu
,
Y.
,
Yamazaki
,
K.
,
Bai
,
M.
, and
Chen
,
Y.
,
2021
, “
Development of a Soft Robot-Based Photodynamic Therapy for Pancreatic Cancer
,”
IEEE/ASME Trans. Mechatron.
,
26
(
6
), pp.
2977
2985
.
53.
Chen
,
Y.
,
Wang
,
L.
,
Galloway
,
K.
,
Godage
,
I.
,
Simaan
,
N.
, and
Barth
,
E.
,
2021
, “
Modal-Based Kinematics and Contact Detection of Soft Robots
,”
Soft Rob.
,
8
(
3
), pp.
298
309
.
54.
Azizkhani
,
M.
,
Godage
,
I. S.
, and
Chen
,
Y.
,
2022
, “
Dynamic Control of Soft Robotic Arm: A Simulation Study
,”
IEEE Rob. Autom. Lett.
,
7
(
2
), pp.
3584
3591
.
55.
Alipour
,
A.
,
Meyer
,
E. S.
,
Dumoulin
,
C. L.
,
Watkins
,
R. D.
,
Elahi
,
H.
,
Loew
,
W.
,
Schweitzer
,
J.
,
Olson
,
G.
,
Chen
,
Y.
,
Tao
,
S.
, and
Guttman
,
M.
, and
2019
, “
MRI Conditional Actively Tracked Metallic Electrophysiology Catheters and Guidewires With Miniature Tethered Radio-Frequency Traps: Theory, Design, and Validation
,”
IEEE Trans. Biomed. Eng.
,
67
(
6
), pp.
1616
1627
.
You do not currently have access to this content.