Abstract

This paper introduces a novel compact three-degree-of-freedom (DOF) parallel robot that will be used as a leg of a 9-DOF kinematically redundant parallel robot. First, the kinematic model of the robot is established based on geometric constraint conditions. Then, the inverse and forward kinematic problems are solved. The inverse problem is straightforward, while the forward problem can be solved analytically by three different approaches. Afterward, a singularity analysis is presented based on the Jacobian matrices derived from the kinematic model. The mathematical conditions for singularities are obtained and their geometric interpretation is given. Finally, the workspace of the robot is analyzed and is shown to correspond to a portion of a torus. The analysis reveals that the robot can have a singularity-free workspace of significant size relative to its footprint provided that some simple limitations are introduced at the design stage.

References

1.
Gosselin
,
C.
, and
Schreiber
,
L.-T.
,
2018
, “
Redundancy in Parallel Mechanisms: A Review
,”
Appl. Mech. Rev.
,
70
(
1
), p.
010802
.
2.
Gosselin
,
C.
,
Laliberté
,
T.
, and
Veillette
,
A.
,
2015
, “
Singularity-Free Kinematically Redundant Planar Parallel Mechanisms With Unlimited Rotational Capability
,”
IEEE Trans. Rob.
,
31
(
2
), pp.
457
467
.
3.
Gosselin
,
C.
, and
Schreiber
,
L.-T.
,
2016
, “
Kinematically Redundant Spatial Parallel Mechanisms for Singularity Avoidance and Large Orientational Workspace
,”
IEEE Trans. Rob.
,
32
(
2
), pp.
286
300
.
4.
Kotlarski
,
J.
,
Abdellatif
,
H.
,
Ortmaier
,
T.
, and
Heimann
,
B.
,
2009
, “
Enlarging the Useable Workspace of Planar Parallel Robots Using Mechanisms of Variable Geometry
,”
2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots
,
London, UK
,
June 22–24
,
IEEE
, pp.
63
72
.
5.
Boudreau
,
R.
, and
Nokleby
,
S.
,
2012
, “
Force Optimization of Kinematically-Redundant Planar Parallel Manipulators Following a Desired Trajectory
,”
Mech. Mach. Theory
,
56
, pp.
138
155
.
6.
Kotlarski
,
J.
,
Heimann
,
B.
, and
Ortmaier
,
T.
,
2011
, “
Experimental Validation of the Influence of Kinematic Redundancy on the Pose Accuracy of Parallel Kinematic Machines
,”
2011 IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 9–13
,
IEEE
, pp.
1923
1929
.
7.
Wen
,
K.
,
Nguyen
,
T. S.
,
Harton
,
D.
,
Laliberté
,
T.
, and
Gosselin
,
C.
,
2021
, “
A Backdrivable Kinematically Redundant (6+3)-Degree-of-Freedom Hybrid Parallel Robot for Intuitive Sensorless Physical Human–Robot Interaction
,”
IEEE Trans. Rob.
,
37
(
4
), pp.
1222
1238
.
8.
Wen
,
K.
, and
Gosselin
,
C.
,
2019
, “
Kinematically Redundant Hybrid Robots With Simple Singularity Conditions and Analytical Inverse Kinematic Solutions
,”
IEEE Rob. Autom. Lett.
,
4
(
4
), pp.
3828
3835
.
9.
Gosselin
,
C.
,
Allan
,
J.
, and
Laliberté
,
T.
,
1999
, “
A New Architecture for a High-Performance 6-DOF Parallel Mechanism
,”
Proceedings of the IFTOMM 10th World Congress on the Theory of Machine and Mechanisms
,
Oulu, Finland
,
June 20–24
, pp.
1140
1145
.
10.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2007
,
Type Synthesis of Parallel Mechanisms
, Vol.
33
,
Springer
,
Berlin/Heidelberg
.
11.
Gogu
,
G.
,
2008
,
Structural Synthesis of Parallel Robots
, Vol.
930
,
Springer
,
Dordrecht, The Netherlands
.
12.
Angeles
,
J.
,
2004
, “
The Qualitative Synthesis of Parallel Manipulators
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
617
624
.
13.
Liu
,
X.-J.
, and
Kim
,
J.
,
2005
, “
A New Spatial Three-DOF Parallel Manipulator With High Rotational Capability
,”
IEEE/ASME Trans. Mechatron.
,
10
(
5
), pp.
502
512
.
14.
Xie
,
F.
,
Liu
,
X.-J.
, and
Wang
,
J.
,
2012
, “
A 3-DOF Parallel Manufacturing Module and Its Kinematic Optimization
,”
Rob. Comput.-Integr. Manuf.
,
28
(
3
), pp.
334
343
.
15.
Carretero
,
J.
,
Podhorodeski
,
R.
,
Nahon
,
M.
, and
Gosselin
,
C. M.
,
2000
, “
Kinematic Analysis and Optimization of a New Three Degree-of-Freedom Spatial Parallel Manipulator
,”
ASME J. Mech. Des.
,
122
(
1
), pp.
17
24
.
16.
Gojtan
,
G.
,
Furtado
,
G.
, and
Hess-Coelho
,
T.
,
2013
, “
Error Analysis of a 3-DOF Parallel Mechanism for Milling Applications
,”
ASME J. Mech. Rob.
,
5
(
3
), p.
034501
.
17.
Conconi
,
M.
, and
Carricato
,
M.
,
2009
, “
A New Assessment of Singularities of Parallel Kinematic Chains
,”
IEEE Trans. Rob.
,
25
(
4
), pp.
757
770
.
18.
Gosselin
,
C.
,
Angeles
,
J.
, et al.,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.
19.
Ball
,
R. S.
,
1998
,
A Treatise on the Theory of Screws
,
Cambridge University Press
,
Cambridge
.
20.
Gibson
,
C.
, and
Hunt
,
K.
,
1990
, “
Geometry of Screw Systems—1: Screws: Genesis and Geometry
,”
Mech. Mach. Theory
,
25
(
1
), pp.
1
10
.
21.
Merlet
,
J.-P.
,
1989
, “
Singular Configurations of Parallel Manipulators and Grassmann Geometry
,”
Int. J. Rob. Res.
,
8
(
5
), pp.
45
56
.
22.
Hao
,
F.
, and
McCarthy
,
J. M.
,
1998
, “
Conditions for Line-Based Singularities in Spatial Platform Manipulators
,”
J. Rob. Syst.
,
15
(
1
), pp.
43
55
.
23.
Merlet
,
J.-P.
,
2005
,
Parallel Robots
, Vol.
128
,
Springer Science & Business Media
,
Dordrecht, The Netherlands
.
24.
Wen
,
K.
, and
Gosselin
,
C. M.
,
2020
, “
Forward Kinematic Analysis of Kinematically Redundant Hybrid Parallel Robots
,”
ASME J. Mech. Rob.
,
12
(
6
), p.
061008
.
25.
Bonev
,
I. A.
,
Ryu
,
J.
,
Kim
,
S.-G.
, and
Lee
,
S.-K.
,
2001
, “
A Closed-Form Solution to the Direct Kinematics of Nearly General Parallel Manipulators With Optimally Located Three Linear Extra Sensors
,”
IEEE Trans. Rob. Autom.
,
17
(
2
), pp.
148
156
.
26.
Chiu
,
Y.-J.
, and
Perng
,
M.-H.
,
2001
, “
Forward Kinematics of a General Fully Parallel Manipulator With Auxiliary Sensors
,”
Int. J. Rob. Res.
,
20
(
5
), pp.
401
414
.
27.
Schreiber
,
L.-T.
, and
Gosselin
,
C.
,
2018
, “
Kinematically Redundant Planar Parallel Mechanisms: Kinematics, Workspace and Trajectory Planning
,”
Mech. Mach. Theory
,
119
, pp.
91
105
.
28.
Li
,
W.
, and
Angeles
,
J.
,
2017
, “
A Novel Three-Loop Parallel Robot With Full Mobility: Kinematics, Singularity, Workspace, and Dexterity Analysis
,”
ASME J. Mech. Rob.
,
9
(
5
), p.
051003
.
29.
Adkins
,
F. A.
, and
Haug
,
E. J.
,
1997
, “
Operational Envelope of a Spatial Stewart Platform
,”
ASME J. Mech. Des.
,
119
(
2
), pp.
330
332
.
30.
Gosselin
,
C.
, and
Angeles
,
J.
,
1989
, “
The Optimum Kinematic Design of a Spherical Three-Degree-of-Freedom Parallel Manipulator
,”
J. Mech. Trans. Autom. Des.
,
111
(
2
), pp.
202
207
.
31.
Wang
,
J.
,
Wu
,
C.
, and
Liu
,
X.-J.
,
2010
, “
Performance Evaluation of Parallel Manipulators: Motion/Force Transmissibility and Its Index
,”
Mech. Mach. Theory
,
45
(
10
), pp.
1462
1476
.
You do not currently have access to this content.