Abstract

The exploration of new lands has always been a source of motivation for mankind. Despite the common idea that our planet is fully known, a huge number of inaccessible places still remain unvisited today, especially below the surface. Recent advances in robotics allow some of these locations to be explored by unmanned vehicles. This paper presents the design of a three modules lighter-than-air vehicle specifically conceived to autonomously explore inaccessible caves and underground environments. The design is inspired from an arthropod, Scutigera coleoptrata, a long-legged centipede commonly found in our houses. Instead of crawling on walls like its biological counterpart, the robotic scutigera hovers and flies in cave tunnels. The aim is to develop a flexible semi-rigid, segmented airship that can withstand long, smooth explorations of caves while transmitting in real-time the images and sounds that it captures. This paper presents the equations of motion for a single module, and experimental results to identify the physical properties of the Scutigera modules. For simulation and control, we develop the model of the multibody system, based on the kinematics of the modules and the dynamics of the vehicle derived using Kane’s equations. Our approach can be extended for an n-bodies system. A three-segment motion is illustrated with simplified scenarios in the horizontal plane using head actuation only. Finally, a structural design of the modules is presented and supported with a proof-of-concept prototype.

References

1.
Bressan
,
A.
, and
Douat
,
M.
,
2014
, “
Gouffre des quinquas (c2-c104) et sima grande de llano carreras (c226). trois nouvelles entrées pour le système la pierre saint-martin—partages
,”
Spelunca
,
136
(
5
), pp.
13
22
.
2.
DARPA
, “Darpa Subterranean Challenge Aims to Revolutionize Underground Capabilities” [Online], https://www.darpa.mil/news-events/2017-12-21, Last Checked 2021-03-07.
3.
Edgecombe
,
G. D.
, and
Giribet
,
G.
,
2007
, “
Evolutionary Biology of Centipedes (Myriapoda: Chilopoda)
,”
Annu. Rev. Entomol.
,
52
(
2
), pp.
151
170
.
4.
Morris
,
A.
,
Ferguson
,
D.
,
Omohundro
,
Z.
,
Bradley
,
D.
,
Silver
,
D.
,
Baker
,
C.
,
Thayer
,
S.
,
Whittaker
,
C.
, and
Whittaker
,
W.
,
2006
, “
Recent Developments in Subterranean Robotics
,”
J. Field Rob.
,
23
(
1
), pp.
35
57
.
5.
Reddy
,
A. H.
,
Kalyan
,
B.
, and
Murthy
,
C. S.
,
2015
, “
Mine Rescue Robot System—A Review
,”
Proc. Earth Planet. Sci.
,
11
(
1
), pp.
457
462
.
6.
Maity
,
A.
,
Majumder
,
S.
, and
Ray
,
D. N.
,
2013
, “
Amphibian Subterranean Robot for Mine Exploration
,”
2013 International Conference on Robotics, Biomimetics, Intelligent Computational Systems
,
Jogjakarta, Indonesia
.
7.
Flyability
, “Indoor Drone in Underground Mining: Accessing the Inaccessible” [Online], https://blog.flyability.com/casestudies/indoor-drone-in-underground-mining-accessing-the-inaccessible, Last Checked 2021-03-07.
8.
Yao
,
N.
,
Anaya
,
E.
,
Tao
,
Q.
,
Cho
,
S.
,
Zheng
,
H.
, and
Zhang
,
F.
,
2017
, “
Monocular Vision-Based Human Following on Miniature Robotic Blimp
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
, IEEE, pp.
3244
3249
.
9.
Oh
,
S.
,
Kang
,
S.
,
Lee
,
K.
,
Ahn
,
S.
, and
Kim
,
E.
,
2006
, “
Flying Display: Autonomous Blimp With Real-Time Visual Tracking and Image Projection
,”
2006 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Beijing, China
,
Oct. 9–15
, IEEE, pp.
131
136
.
10.
St-Onge
,
D.
,
Gosselin
,
C. M.
, and
Reeves
,
N.
,
2010
, “
Dynamic Modelling of a Cubic Flying Robot
,”
34th Annual Mechanisms and Robotics Conference, Parts A and B
,
Montreal, Quebec, Canada
,
Aug. 15–18
.
11.
Burri
,
M.
,
Gasser
,
L.
,
Kach
,
M.
,
Krebs
,
M.
,
Laube
,
S.
,
Ledergerber
,
A.
, and
Meier
,
D.
,
2013
, “
Design and Control of a Spherical Omnidirectional Blimp
,”
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Tokyo, Japan
,
Nov. 3–7
, IEEE, pp.
1873
1879
.
12.
Watanabe
,
K.
,
Okamura
,
N.
, and
Nagai
,
I.
,
2015
, “
Development of a Blimp Robot Consisting of Four-Divided Envelopes With Four Propellers
,”
2015 15th International Conference on Control, Automation and Systems (ICCAS)
,
Busan, South Korea
,
Oct. 13–16
, IEEE,pp. 237–242.
13.
Song
,
S. H.
, and
Choi
,
H. R.
,
2021
, “
Design, Control and Implementation of Torus-Type Omniorientational Blimp With Tilting Actuators
,”
IEEE Access
,
9
(
1
), pp.
147985
147993
.
14.
Lanteigne
,
E.
,
Alsayed
,
A.
,
Robillard
,
D.
, and
Recoskie
,
S. G.
,
2017
, “
Modeling and Control of an Unmanned Airship with Sliding Ballast
,”
J. Intell. Rob. Sys.
,
88
(
2–4
), pp.
285
297
.
15.
St-Onge
,
D.
,
Brèches
,
P. Y.
,
Sharf
,
I.
,
Reeves
,
N.
,
Rekleitis
,
I.
,
Abouzakhm
,
P.
,
Girdhar
,
Y.
,
Harmat
,
A.
,
Dudek
,
G.
, and
Giguère
,
P.
,
2017
, “
Control, Localization and Human Interaction With an Autonomous Lighter-Than-Air Performer
,”
Rob. Auton. Syst.
,
88
(
C
), pp.
165
186
.
16.
St-Onge
,
D.
,
Gosselin
,
C.
, and
Reeves
,
N.
,
2015
, “
Dynamic modelling and control of a cubic flying blimp using external motion capture
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
229
(
10
), pp.
970
982
.
17.
St-Onge
,
D.
,
Br‘eches
,
P.-Y.
,
Sharf
,
I.
,
Reeves
,
N.
,
Rekleitis
,
I.
,
Abouzakhm
,
P.
,
Girdhar
,
Y.
,
Harmat
,
A.
,
Dudek
,
G.
, and
Giguére
,
P.
,
2017
, “
Control, Localization and Human Interaction with an Autonomous Lighter-Than-air Performer
,”
Rob. Auton. Sys.
,
88
(
1
), pp.
165
186
.
18.
Faye
,
M.
, “Un cube flottant dans La Verna” [Online], https://www.sudouest.fr/2015/07/21/un-cube-flottant-d-ans-la-vernahistoire-d-une-singuliere-grotte-2053745-3961.php, Last Checked 2021-03-07.
19.
Straubel
,
M.
, and
Sinapius
,
M.
,
2013
,
Adaptive, Tolerant and Efficient Composite Structures
,
Springer
,
Berlin
, pp.
237
250
.
20.
Li
,
Y.
, and
Nahon
,
M.
,
2007
, “
Modeling and Simulation of Airship Dynamics
,”
J. Guidance Control Dyn.
,
30
(
6
), pp.
1691
1700
.
21.
Fossen
,
T.
,
1994
,
Guidance and Control of Ocean Vehicles
,
Wiley
,
Chichester
.
22.
Korotkin
,
A. I.
,
2009
,
Added Masses of Ship Structures
, 1st ed.,
Springer
,
Dordrecht
.
Original Russian edition published 2007
.
23.
Hoerner
,
S. F.
,
1965
,
Fluid-Dynamic Drag: Practical Information on Aerodynamic Drag and Hydrodynamic Resistance
,
Hoerner Fluid Dynamics
,
Alburqueque, NM
.
24.
Georgiades
,
C.
,
2005
, “
Simulation and Control of an Underwater Hexapod Robot
,” Master’s thesis, McGill, Montreal.
25.
Kane
,
T. R.
, and
Levinson
,
D. A.
,
1985
,
Dynamics Theory and Applications
,
Internet-First University Press
,
Ithaca, NY
.
26.
Kurfess
,
T.R.
,
2005
,
Robotics and Automation Handbook
, 1st ed.,
CRC Press
,
Boca Raton, FL
.
27.
Breches
,
P.-Y.
,
2015
, “
Dynamics Modeling and State Feedback Control of a Lighter-Than-Air Cubic Blimp
,” PhD thesis,
McGill
,
Montreal
.
28.
Salas Gordoniz
,
J. E.
,
2022
, “Scutigera tests” [Online], https://youtu.be/7WsqGxcMFK4
29.
Phillips
,
J.
,
2007
,
Freedom in Machinery
,
Cambridge University Press
,
Cambridge
.
30.
Gosselin
,
C. M.
, and
Gagnon-Lachance
,
D.
,
2006
, “
Expandable Polyhedral Mechanisms Based on Polygonal One-Degree-of-Freedom Faces
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
220
(
7
), pp.
1011
1018
.
You do not currently have access to this content.