Abstract

The creative design of kinematic structures with excellent performance remains an open issue in the quest for developing novel multi-loop mechanisms. This study presents an automatic method to synthesize all nonisomorphic planar multi-loop mechanisms satisfying the required connectivity between the base and the end-effector. First, based on the connectivity matrix calculation, all multi-loop mechanisms are generated from synthesized kinematic chains. Second, the concepts of perimeter, canonical, and characteristic graphs of multi-color topological graphs are addressed to acquire the simplified characteristic hybrid code (SCHC) in order to eliminate isomorphic multi-loop mechanisms. Then, an automatic method to synthesize all nonisomorphic planar multi-loop mechanisms with the required connectivity between the base and the end-effector is provided. Finally, a practical application of this synthesis method is illustrated by taking the mechanical arm of a face-shovel hydraulic excavator as an example to demonstrate the effectiveness of the method.

References

1.
Tsai
,
L. W.
,
2000
,
Mechanism Design: Enumeration of Kinematic Structures According to Function
,
CRC Press
,
Boca Raton
.
2.
Mruthyunjaya
,
T. S.
,
2003
, “
Kinematic Structure of Mechanisms Revisited
,”
Mech. Mach. Theory
,
38
(
4
), pp.
279
320
. 10.1016/S0094-114X(02)00120-9
3.
Yan
,
H. S.
, and
Chiu
,
Y. T.
,
2015
, “
On the Number Synthesis of Kinematic Chains
,”
Mech. Mach. Theory
,
89
(
7
), pp.
128
144
. 10.1016/j.mechmachtheory.2014.08.012
4.
Huang
,
S. G.
, and
Schimmels
,
J. M.
,
2020
, “
Synthesis of Planar Compliances With Mechanisms Having Six Compliant Components: Geometric Approach
,”
ASME J. Mech. Robot.
,
12
(
3
), p.
031013
. 10.1115/1.4045648
5.
Li
,
Q. C.
,
Huang
,
Z.
, and
Herve
,
J. M.
,
2004
, “
Type Synthesis of 3R2 T 5-DOF Parallel Mechanisms Using the Lie Group of Displacements
,”
IEEE Trans. Robot. Autom.
,
20
(
2
), pp.
173
180
. 10.1109/TRA.2004.824650
6.
Simoni
,
R.
,
Carboni
,
A. P.
, and
Martins
,
D.
,
2009
, “
Enumeration of Parallel Manipulators
,”
Robotica
,
27
(
3
), pp.
589
597
. 10.1017/S0263574708004979
7.
Li
,
S. J.
,
Wang
,
H. G.
, and
Dai
,
J. S.
,
2015
, “
Assur-Group Inferred Structural Synthesis for Planar Mechanisms
,”
ASME J. Mech. Robot.
,
7
(
4
), p.
041001
. 10.1115/1.4029116
8.
Ding
,
H. F.
,
Feng
,
Z. M.
,
Yang
,
W. J.
, and
Kecskeméthy
,
A.
,
2017
, “
Structure Synthesis of 6-dof Forging Manipulators
,”
Mech. Mach. Theory
,
111
(
5
), pp.
135
151
. 10.1016/j.mechmachtheory.2017.01.001
9.
Ho
,
T. T.
, and
Hwang
,
S. J.
,
2019
, “
Configuration Synthesis of Two-Mode Hybrid Transmission Systems With Nine-Link Mechanisms
,”
Mech. Mach. Theory
,
142
(
12
), p.
103908
. 10.1016/j.mechmachtheory.2019.103615
10.
Jia
,
G. L.
,
Li
,
B.
,
Huang
,
H. L.
, and
Zhang
,
D.
,
2020
, “
Type Synthesis of Metamorphic Mechanisms With Scissor-Like Linkage Based on Different Kinds of Connecting Pairs
,”
Mech. Mach. Theory
,
151
(
9
), p.
103848
. 10.1016/j.mechmachtheory.2020.103848
11.
Li
,
Y.
,
Murray
,
A. P.
, and
Myszka
,
D. H.
,
2020
, “
Synthesizing Mechanical Chains for Morphing Between Spatial Curves
,”
ASME J. Mech. Rob.
,
12
(
2
), p.
021105
. 10.1115/1.4045938
12.
Liu
,
Y.
,
Li
,
Y. Z.
,
Yao
,
Y. A.
, and
Kong
,
X. W.
,
2020
, “
Type Synthesis of Multi-Mode Mobile Parallel Mechanisms Based on Refined Virtual Chain Approach
,”
Mech. Mach. Theory
,
152
(
10
), p.
103908
. 10.1016/j.mechmachtheory.2020.103908
13.
Tuttle
,
E.
,
1996
, “
Generation of Planar Kinematic Chains
,”
Mech. Mach. Theory
,
31
(
6
), pp.
729
748
. 10.1016/0094-114X(95)00083-B
14.
Butcher
,
E. A.
, and
Hartman
,
C.
,
2005
, “
Efficient Enumeration and Hierarchical Classification of Planar Simple-Jointed Kinematic Chains: Application to 12- and 14-Bar Single Degree-of-Freedom Chains
,”
Mech. Mach. Theory
,
40
(
9
), pp.
1030
1050
. 10.1016/j.mechmachtheory.2004.12.015
15.
Sunkari
,
R. P.
, and
Schmidt
,
L. C.
,
2006
, “
Structural Synthesis of Planar Kinematic Chains by Adapting a McKay-Type Algorithm
,”
Mech. Mach. Theory
,
41
(
9
), pp.
1021
1030
. 10.1016/j.mechmachtheory.2005.11.007
16.
Martins
,
D.
,
Simoni
,
R.
, and
Carboni
,
A. P.
,
2010
, “
Fractionation in Planar Kinematic Chains: Reconciling Enumeration Contradictions
,”
Mech. Mach. Theory
,
45
(
11
), pp.
1628
1641
. 10.1016/j.mechmachtheory.2010.06.011
17.
Yan
,
H. S.
, and
Chiu
,
Y. T.
,
2014
, “
An Improved Algorithm for the Construction of Generalized Kinematic Chains
,”
Mech. Mach. Theory
,
78
(
8
), pp.
229
247
. 10.1016/j.mechmachtheory.2014.03.015
18.
Ding
,
H. F.
,
Huang
,
P.
,
Yang
,
W. J.
, and
Kecskeméthy
,
A.
,
2016
, “
Automatic Generation of the Complete Set of Planar Kinematic Chains With up to Six Independent Loops and up to 19 Links
,”
Mech. Mach. Theory
,
96
(
2
), pp.
75
93
. 10.1016/j.mechmachtheory.2015.09.006
19.
Ding
,
H. F.
,
Zi
,
B.
,
Huang
,
P.
, and
Kecskeméthy
,
A.
,
2013
, “
The Whole Family of Kinematic Structures for Planar 2- and 3-DOF Fractionated Kinematic Chains
,”
Mech. Mach. Theory
,
70
(
12
), pp.
74
90
. 10.1016/j.mechmachtheory.2013.07.001
20.
Ding
,
H. F.
,
Yang
,
W. J.
,
Huang
,
P.
, and
Kecskeméthy
,
A.
,
2013
, “
Automatic Structural Synthesis of Planar Multiple Joint Kinematic Chains
,”
ASME J. Mech. Des.
,
135
(
9
), p.
091007
. 10.1115/1.4024733
21.
Ding
,
H. F.
,
Yang
,
W. J.
,
Zi
,
B.
, and
Kecskeméthy
,
A.
,
2016
, “
The Family of Planar Kinematic Chains With Two Multiple Joints
,”
Mech. Mach. Theory
,
99
(
5
), pp.
103
116
. 10.1016/j.mechmachtheory.2016.01.003
22.
Simoni
,
R.
,
Carboni
,
A. P.
, and
Martins
,
D.
,
2009
, “
Enumeration of Kinematic Chains and Mechanisms
,”
Proc. Inst. Mech. Eng., Part C
,
223
(
4
), pp.
1017
1024
. 10.1243/09544062JMES1071
23.
Dargar
,
A.
,
Hasan
,
A.
, and
Khan
,
R. A.
,
2009
, “
A Method of Identification of Kinematic Chains and Distinct Mechanisms
,”
Comput. Assist. Mech. Eng. Sci.
,
16
(
1
), pp.
133
141
.
24.
Yang
,
W. J.
,
Ding
,
H. F.
,
Lai
,
X. Z.
, and
Wu
,
M.
,
2017
, “
Automatic Synthesis of Planar Simple Joint Mechanisms With up to 19 Links
,”
Mech. Mach. Theory
,
113
(
7
), pp.
193
207
. 10.1016/j.mechmachtheory.2017.01.007
25.
Phillips
,
J.
,
1984
,
Freedom in Machinery
,
Cambridge University Press
,
Cambridge, UK
.
26.
Ding
,
H. F.
,
Feng
,
Z. M.
,
Wang
,
Y. Y.
, and
Fu
,
H. Y.
,
2014
, “
Conceptual Design of an Exactly Straight Lifting Forging Manipulator
,”
ASME J. Mech. Rob.
,
6
(
3
), p.
034502
. 10.1115/1.4027238
27.
Hu
,
B.
,
Shi
,
D. S.
,
Xie
,
T. F.
,
Hu
,
B. B.
, and
Ye
,
N. J.
,
2020
, “
Kinematically Identical Manipulators Derivation for the 2-RPU + UPR Parallel Manipulator and Their Constraint Performance Comparison
,”
ASME J. Mech. Rob.
,
12
(
6
), p.
061011
. 10.1115/1.4047540
28.
Zhao
,
C.
,
Chen
,
Z.
,
Li
,
Y.
, and
Huang
,
Z.
,
2020
, “
Motion Characteristics Analysis of a Novel 2R1 T 3-UPU Parallel Mechanism
,”
ASME J. Mech. Des.
,
142
(
1
), p.
012302
. 10.1115/1.4043938
29.
Hunt
,
K. H.
,
1978
,
Kinematic Geometry of Mechanisms
,
Clarendon Press
,
Oxford
.
30.
Tischler
,
C. R.
,
Samuel
,
A. E.
, and
Hunt
,
K. H.
,
1995
, “
Kinematic Chains for Robot Hands: Part 2 Kinematic Constraints, Classification, Connectivity and Actuation
,”
Mech. Mach. Theory
,
30
(
8
), pp.
1217
1239
. 10.1016/0094-114X(95)00044-Y
31.
Shoham
,
M.
, and
Roth
,
B.
,
1997
, “
Connectivity in Open and Closed Loop Robotic Mechanisms
,”
Mech. Mach. Theory
,
32
(
3
), pp.
279
294
. 10.1016/S0094-114X(96)00057-2
32.
Belfiore
,
N. P.
, and
Benedetto
,
A. D.
,
2000
, “
Connectivity and Redundancy in Spatial Robots
,”
Int. J. Robot. Res.
,
19
(
12
), pp.
1245
1261
. 10.1177/02783640022068066
33.
Liberati
,
A.
, and
Belfiore
,
N. P.
,
2006
, “
A Method for the Identification of the Connectivity in Multi-Loop Kinematic Chains: Analysis of Chains With Total and Partial Mobility
,”
Mech. Mach. Theory
,
41
(
12
), pp.
1443
1466
. 10.1016/j.mechmachtheory.2006.01.015
34.
Martins
,
D.
, and
Carboni
,
A. P.
,
2008
, “
Variety and Connectivity in Kinematic Chains
,”
Mech. Mach. Theory
,
43
(
10
), pp.
1236
1252
. 10.1016/j.mechmachtheory.2007.10.011
35.
Huang
,
P.
,
Ding
,
H. F.
,
Yang
,
W. J.
, and
Kecskeméthy
,
A.
,
2017
, “
An Automatic Method for the Connectivity Calculation in Planar Closed Kinematic Chains
,”
Mech. Mach. Theory
,
109
(
3
), pp.
195
219
. 10.1016/j.mechmachtheory.2016.10.004
36.
Huang
,
P.
, and
Ding
,
H. F.
,
2019
, “
Structural Synthesis of Baranov Trusses With Up to 13 Links
,”
ASME J. Mech. Des.
,
141
(
7
), p.
072301
. 10.1115/1.4042620
37.
Huang
,
P.
, and
Ding
,
H. F.
,
2020
, “
Structural Synthesis of Assur Groups With up to 12 Links and Creation of Their Classified Databases
,”
Mech. Mach. Theory
,
145
(
3
), p.
103668
. 10.1016/j.mechmachtheory.2019.103668
You do not currently have access to this content.