Abstract

This paper proposes a dynamic point-to-point trajectory planning technique for three degrees-of-freedom (DOFs) cable-suspended parallel robots. The proposed technique is capable of generating feasible multiple-swing trajectories that reach points beyond the footprint of the robot. Tree search algorithms are used to automatically determine a sequence of intermediate points to enhance the versatility of the planning technique. To increase the efficiency of the tree search, a one-swing motion primitive and a steering motion primitive are designed based on the dynamic model of the robot. Closed-form expressions for the motion primitives are given, and a corresponding rapid feasibility check process is proposed. An energy-based metric is used to estimate the distance in the Cartesian space between two points of a dynamic point-to-point task, and this system’s specific distance metric speeds up the coverage. The proposed technique is evaluated using a series of Monte Carlo runs, and comparative statistics results are given. Several example trajectories are presented to illustrate the approach. The results are compared with those obtained with the existing state-of-the-art methods, and the proposed technique is shown to be more general compared to previous analytical planning techniques while generating smoother trajectories than traditional rapidly exploring randomized tree (RRT) methods.

References

1.
Cone
,
L. L.
,
1985
, “
Skycam—An Aerial Robotic Camera System
,”
Byte
,
10
(
10
), p.
122
.
2.
Pusey
,
J.
,
Fattah
,
A.
,
Agrawal
,
S.
,
Messina
,
E.
,
Pierrot
,
F.
, and
Ramdani
,
N.
,
2004
, “
Design and Workspace Analysis of a 6–6 Cable-Suspended Parallel Robot
,”
Mech. Mach. Theory
,
39
(
7
), pp.
761
778
. 10.1016/j.mechmachtheory.2004.02.010
3.
Bohigas
,
O.
,
Manubens
,
M.
, and
Ros
,
L.
,
2016
, “
Planning Wrench-Feasible Motions for Cable-Driven Hexapods
,”
IEEE Trans. Robot.
,
32
(
2
), pp.
442
451
. 10.1109/TRO.2016.2529640
4.
Barnett
,
E.
, and
Gosselin
,
C.
,
2015
, “
Time-Optimal Trajectory Planning of Cable-Driven Parallel Mechanisms for Fully Specified Paths With G1-Discontinuities
,”
J. Dyn. Syst. Meas. Control
,
137
(
7
), pp.
071
091
. 10.1115/1.4029769
5.
Barnett
,
G.
, and
Gosselin
,
C.
,
2005
, “
Determination of the Dynamic Workspace of Cable-Driven Planar Parallel Mechanisms
,”
ASME J. Mech. Des.
,
127
(
2
), pp.
242
248
. 10.1115/1.1830045
6.
Gosselin
,
C.
,
2013
, “Global Planning of Dynamically Feasible Trajectories for Three-DOF Spatial Cable-Suspended Parallel Robots,”
Cable-Driven Parallel Robots
,
T.
Bruckmann
and
A.
Pott
, eds.,
Springer
,
Stuttgart, Germany
, pp.
3
22
.
7.
Gosselin
,
C.
, and
Foucault
,
S.
,
2014
, “
Dynamic Point-to-Point Trajectory Planning of a Two-DOF Cable-Suspended Parallel Robot
,”
IEEE Trans. Rob.
,
30
(
3
), pp.
728
736
. 10.1109/TRO.2013.2292451
8.
Jiang
,
X. l.
, and
Gosselin
,
C.
,
2016
, “
Dynamic Point-to-Point Trajectory Planning of a Three-DOF Cable-Suspended Parallel Robot
,”
IEEE Trans. Rob.
,
32
(
6
), pp.
1550
1557
. 10.1109/TRO.2016.2597315
9.
Jiang
,
X. l.
,
Barnett
,
E.
, and
Gosselin
,
C.
,
2018
, “
Dynamic Point-to-Point Trajectory Planning Beyond the Static Workspace for Six-DOF Cable-Suspended Parallel Robots
,”
IEEE Trans. Robot.
,
34
(
3
), pp.
781
793
. 10.1109/TRO.2018.2794549
10.
Dion-Gauvin
,
P.
, and
Gosselin
,
C.
,
2018
, “
Dynamic Point-to-Point Trajectory Planning of a Three-DOF Cable-Suspended Mechanism Using the Hypocycloid Curve
,”
IEEE/ASME Trans. Mechatron.
,
23
(
4
), pp.
1964
1972
. 10.1109/TMECH.2018.2840051
11.
Mottola
,
G.
,
Gosselin
,
C.
, and
Carricato
,
M.
,
2018
, “Dynamically-Feasible Elliptical Trajectories for Fully Constrained 3-DOF Cable-Suspended Parallel Robots,”
Cable-Driven Parallel Robots
,
C.
Gosselin
and
P.
Cardou
, eds.,
Springer
,
Quebec City, Canada
, pp.
219
230
.
12.
Mottola
,
G.
,
Gosselin
,
C.
, and
Carricato
,
M.
,
2018
, “
Dynamically Feasible Periodic Trajectories for Generic Spatial Three-Degree-of-Freedom Cable-Suspended Parallel Robots
,”
ASME J. Mech. Rob.
,
10
(
3
), pp.
4
014
. 10.1115/1.4039499
13.
Mottola
,
G.
,
Gosselin
,
C.
, and
Carricato
,
M.
,
2019
, “
Dynamically Feasible Motions of a Class of Purely-Translational Cable-Suspended Parallel Robots
,”
Mech. Mach. Theory
,
132
(
1
), pp.
193
206
. 10.1016/j.mechmachtheory.2018.10.017
14.
Zhang
,
N.
, and
Shang
,
W. W.
,
2016
, “
Dynamic Trajectory Planning of a 3-DOF Under-Constrained Cable-Driven Parallel Robot
,”
Mech. Mach. Theory
,
98
(
1
), pp.
21
35
. 10.1016/j.mechmachtheory.2015.11.007
15.
Zhang
,
N.
,
Shang
,
W. W.
, and
Cong
,
S.
,
2017
, “
Geometry-Based Trajectory Planning of a 3-3 Cable-Suspended Parallel Robot
,”
IEEE Trans. Rob.
,
33
(
2
), pp.
484
491
. 10.1109/TRO.2016.2631591
16.
Zhang
,
N.
,
Shang
,
W. W.
, and
Cong
,
S.
,
2018
, “
Dynamic Trajectory Planning for a Spatial 3-DoF Cable-Suspended Parallel Robot
,”
Mech. Mach. Theory
,
122
(
1
), pp.
177
196
. 10.1016/j.mechmachtheory.2017.12.023
17.
Bordalba
,
R.
,
Porta
,
J. M.
, and
Ros
,
L.
,
2018
, “Randomized Kinodynamic Planning for Cable-Suspended Parallel Robots,”
Cable-Driven Parallel Robots
,
C.
Gosselin
and
P.
Cardou
, eds.,
Springer
,
Quebec City, Canada
, pp.
195
206
.
18.
Donald
,
B.
,
Xavier
,
P.
,
Canny
,
J.
, and
Reif
,
J.
,
1993
, “
Kinodynamic Motion Planning
,”
J. ACM
,
40
(
5
), pp.
1048
1066
. 10.1145/174147.174150
19.
LaValle
,
S. M.
,
2006
,
Planning Algorithms
,
Cambridge University Press
,
Cambridge
.
20.
LaValle
,
S. M.
, and
Kuffner
,
J. J.
,
2001
, “
Randomized Kinodynamic Planning
,”
Int. J. Rob. Res.
,
20
(
5
), pp.
378
400
. 10.1177/02783640122067453
21.
Pivtoraiko
,
M.
, and
Kelly
,
A.
,
2011
, “
Kinodynamic Motion Planning With State Lattice Motion Primitives
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Francisco, CA
,
Sept. 25–30
, pp.
2172
2179
.
22.
Pivtoraiko
,
M.
,
Mellinger
,
D.
, and
Kumar
,
V.
,
2013
, “
Kinodynamic RRT*: Asymptotically Optimal Motion Planning for Robots With Linear Dynamics
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Karlsruhe
,
May 6–10
,
2011
, pp.
2452
2458
.
23.
Manubens
,
M.
,
Devaurs
,
D.
,
Ros
,
L.
, and
Cortes
,
J.
,
2013
, “
Motion Planning for 6-D Manipulation With Aerial Towed-Cable Systems
,”
Proceedings of the Robotics: Science and Systems
,
Berlin
,
June 24–28
, pp.
28
36
.
24.
Zhang
,
B.
,
Shang
,
W. W.
, and
Cong
,
S.
,
2018
, “
Optimal RRT* Planning and Synchronous Control of Cable-Driven Parallel Robots
,”
Proceedings of the International Conference on Advanced Robotics and Mechatronics
,
Singapore
,
July 18–20
, pp.
95
100
.
25.
Dion-Gauvin
,
P.
, and
Gosselin
,
C.
,
2017
, “
Trajectory Planning for the Static to Dynamic Transition of Point-Mass Cable-Suspended Parallel Mechanisms
,”
Mech. Mach. Theory
,
113
(
1
), pp.
158
178
. 10.1016/j.mechmachtheory.2017.03.003
26.
Karaman
,
S.
, and
Frazzoli
,
E.
,
2011
, “
Sampling-Based Algorithms for Optimal Motion Planning
,”
Int. J. Rob. Res.
,
30
(
7
), pp.
846
894
. 10.1177/0278364911406761
27.
Cheng
,
P.
, and
LaValle
,
S. M.
,
2001
, “
Reducing Metric Sensitivity in Randomized Trajectory Design
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, HI
,
Oct. 29–Nov. 3
, pp.
43
48
.
28.
Perez
,
A.
,
Platt
,
R.
,
Konidaris
,
G.
,
Kaelbling
,
L.
, and
Lozano-Perez
,
T.
,
2012
, “
LQR-RRT*: Optimal Sampling-Based Motion Planning With Automatically Derived Extension Heuristics
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
St. Paul, MN
,
May 14–18
, pp.
2537
25423
.
You do not currently have access to this content.