Abstract
Rigid foldability is an important requirement when origami is used as the basis to design technical systems that consist of rigid materials. This paper presents a heuristic algorithm that adjusts the location of vertices of nonrigidly foldable but kinematically determinate crease patterns such that they become rigidly foldable. The adjustment is achieved by utilizing constraint violations that occur during the folding process of nonrigidly foldable configurations. The folding process is kinematically simulated through a robust simulator that is based on a bar and hinge principle. The benefits of the algorithm are showcased in different examples, including single-vertex as well as multi-vertex crease patterns.
Issue Section:
Research Papers
References
1.
Demaine
, E. D.
, and Demaine
, M. L.
, 2002
, “Recent Results in Computational Origami
,” Origami3: Third International Meeting of Origami Science, Mathematics and Education
, Asilomar, California, USA
.2.
Demaine
, E. D.
, and Tachi
, T.
, 2017
, “Origamizer: A Practical Algorithm for Folding any Polyhedron
,” LIPIcs-Leibniz International Proceedings in Informatics
, Schloss Dagstuhl-Leibniz-Zentrum für Informatik.3.
Tachi
, T.
, 2009
, “Simulation of Rigid Origami
,” Origami4: Fourth International Meeting of Origami Science, Mathematics and Education
, Pasadena, California, USA
.4.
Filipov
, E. T.
, Liu
, K.
, Zachi
, T.
, Schenk
, M.
, and Paulino
, G. H.
, 2017
, “Bar and Hinge Models for Scalable Analysis of Origami
,” Int. J. Solids Struct.
, 124
, pp. 26
–45
. 5.
Lang
, R. J.
, Nelson
, T.
, Magleby
, S.
, and Howell
, L.
, 2017
, “Thick Rigidly Foldable Origami Mechanisms Based on Synchronized Offset Rolling Contact Elements
,” ASME J. Mech. Robot.
, 9
(2
), p. 021013
. 6.
Morgan
, J.
, Magleby
, S. P.
, Lang
, R. J.
, and Howell
, L.
, 2015
, “A Preliminary Process for Origami-Adapted Design
,” ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Boston, MA
.7.
Zimmermann
, L.
, Shea
, K.
, and Stanković
, T.
, 2018
, “Origami Sensitivity – On the Influence of Vertex Geometry
,” 7th International Meeting of Origami Science, Mathematics and Education (7OSME)
, Oxford, UK
.8.
He
, Z.
, and Guest
, S. D.
, 2018
, “On Rigid Origami II: Quadrilateral Creased Papers
,” preprint arXiv:1804.06483.9.
Tachi
, T.
, 2010
, “Freeform Variations of Origami
,” , 14
(2
), pp. 203
–215
. ISSN 1433-8157.10.
Huffman
, D.
, 1976
, “Curvature and Creases: A Primer on Paper
,” IEEE Trans. Comput.
, C25
(10
), pp. 1010
–1019
. 11.
Miura
, K.
, 1989
, “A Note on Intrinsic Geometry of Origami,” Research of Pattern Formation
, R.
Takaki
, ed., KTK Scientific Publishers
, Tokyo, Japan
, pp. 91
–102
.12.
Lang
, R. J.
, Magleby
, S.
, and Howell
, L.
, 2015
, “Single-Degree-of-Freedom Rigidly Foldable Origami Flashers
,” ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Boston, MA
.13.
Abel
, Z.
, Cantarella
, J.
, Demaine
, E. D.
, Eppstein
, D.
, Hull
, T. C.
, Ku
, J. S.
, Lang
, R. J.
, and Tachi
, T.
, 2016
, “Rigid Origami Vertices: Conditions and Forcing Sets
,” J. Comput. Geom.
, 7
(1
), pp. 171
–184
. 14.
Belcastro
, S.-M.
, and Hull
, T. C.
, 2002
, “A Mathematical Model for Non-Flat Origami
,” Origami 3: Proceedings of the 3rd International Meeting of Origami Mathematics, Science, and Education
, Asilomar, California, USA
.15.
Watanabe
, N.
, and Kawaguchi
, K.
, 2009
, “The Method for Judging Rigid Foldability
,” Origami4: Fourth International Meeting of Origami Science, Mathematics and Education
, Pasadena, California, USA
.16.
Schief
, W. K.
, Bobenko
, A. I.
, and Hoffmann
, T.
, 2008
, “On the Integrability of Infinitesimal and Finite Deformations of Polyhedral Surfaces,” Discrete Differential Geometry
, Birkhäuser
, Basel
, pp. 67
–93
.17.
Cai
, J.
, Deng
, X.
, Zhang
, Y.
, Feng
, J.
, and Zhou
, Y.
, 2016
, “Folding Behavior of a Foldable Prismatic Mast With Kresling Origami Pattern
,” ASME J. Mech. Robot.
, 8
(3
), p. 031004
. 18.
Cai
, J.
, Deng
, X.
, Xu
, Y.
, and Feng
, J.
, 2016
, “Motion Analysis of a Foldable Barrel Vault Based on Regular and Irregular Yoshimura Origami
,” ASME J. Mech. Robot.
8
(2
), p. 021017
. 19.
Evans
, T. A.
, Lang
, R. J.
, Magleby
, S.
, and Howell
, L.
, 2015
, “Rigidly Foldable Origami Twists
,” Origami
, 6
, pp. 119
–130
. 20.
Feng
, H.
, Peng
, R.
, Ma
, J.
, and Chen
, Y.
, 2018
, “Rigid Foldability of Generalized Triangle Twist Origami Pattern and Its Derived 6r Linkages
,” ASME J. Mech. Robot.
, 10
(5
), p. 051003
. 21.
Liu
, S.
, Weilin
, L.
, Yan
, C.
, and Guoxing
, L.
, 2016
, “Deployable Prismatic Structures With Rigid Origami Patterns
,” ASME J. Mech. Robot.
, 8
(3
), p. 031002
. 22.
Tachi
, T.
, 2009
, “Generalization of Rigid-Foldable Quadrilateral-Mesh Origami
,” J. Int. Assoc. Shell Spat. Struct.
, 50
(3
), pp. 173
–179
.23.
Tachi
, T.
, “Geometric Considerations for the Design of Rigid Origami Structures
,” Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium
, 12
(10
), Shanghai, China
.24.
Cai
, J.
, Qian
, Z.
, Jiang
, C.
, Feng
, J.
, and Xu
, Y.
, 2016
, “Mobility and Kinematic Analysis of Foldable Plate Structures Based on Rigid Origami
,” ASME J. Mech. Robot.
, 8
(6
), p. 064502
. 25.
Hull
, T.
, 2003
, “Counting Mountain-Valley Assignments for Flat Folds
,” Ars Combinatoria
, 67
, pp. 175
–188
.26.
Zirbel
, S. A.
, Lang
, R. J.
, Thomson
, M. W.
, Sigel
, D. A.
, Walkemeyer
, P. E.
, Trease
, B. P.
, Magleby
, S. P.
, and Howell
, L.
, 2013
, “Accommodating Thickness in Origami-Based Deployable Arrays
,” ASME J. Mech. Des.
, 135
(11
), p. 111005
. 27.
Lang
, R. J.
, and Howell
, L.
, 2018
, “Rigidly Foldable Quadrilateral Meshes from Angle Arrays
,” ASME J. Mech. Robot.
, 10
(2
), p. 021004
. 28.
Diaz
, A. R.
, 2014
, “Origami Folding and Bar Frameworks
,” ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Buffalo, NY
.Copyright © 2019 by ASME
You do not currently have access to this content.