Elastic storage has been reported to help flying insects save inertial power when flapping their wings. This motivates recent research and development of elastic storage for flapping-wing micro air vehicles (fwMAVs) and their ground (tethered) flight tests. The previous designs of spring-loaded transmissions are relatively heavy or bulky; they have not yet been adopted by freely hovering prototypes of fwMAVs, especially those with four flapping wings. It is not clear if partial elastic storage can still help save power for flapping flight while not overloading the motorized transmission. Here, we developed ultralight and compact film hinges as elastic storage for four flapping wings. This spring-assisted transmission was motor driven such that the wing beat frequency was higher than the natural frequency of elastically hinged wings. Our experiments show that spring recoil helps accelerate wing closing thus generating more thrust. When powered by a 3.18 g brushless motor, this 13.4 g fwMAV prototype with spring-assisted transmission can take off by beating four flexible wings (of 240 mm span) with up to 21–22 g thrust generation at 22–23 Hz. Due to lower disk loading and high-speed reduction, indirect drive of the four elastically hinged wings can produce a thrust per unit of electrical power of up to 4.6 g/W. This electrical-power-specific thrust is comparable to that generated by direct drive of a propeller, which was recommended by the motor (AP-03 7000kv) manufacturer.

References

1.
Zdunich
,
P.
,
Bilyk
,
D.
,
MacMaster
,
M.
,
Loewen
,
D.
,
DeLaurier
,
J.
,
Kornbluh
,
R.
,
Low
,
T.
,
Stanford
,
S.
, and
Holeman
,
D.
,
2007
, “
Development and Testing of the Mentor Flapping-Wing Micro Air Vehicle
,”
J. Aircr.
,
44
(
5
), pp.
1701
1711
.
2.
Kawamura
,
Y.
,
Souda
,
S.
,
Nishimoto
,
S.
, and
Ellington
,
C. P.
,
2008
, “
Clapping-Wing Micro Air Vehicle of Insect Size
,”
Bio-Mechanisms of Swimming and Flying
,
Springer
, Tokyo, pp.
319
330
.
3.
Lentink
,
D.
,
Jongerius
,
S. R.
, and
Bradshaw
,
N. L.
,
2009
, “
The Scalable Design of Flapping Micro-Air Vehicles Inspired by Insect Flight
,”
Flying Insects and Robots
,
Springer
, Berlin, pp.
185
205
.
4.
Nakata
,
T.
,
Liu
,
H.
,
Tanaka
,
Y.
,
Nishihashi
,
N.
,
Wang
,
X.
, and
Sato
,
A.
,
2011
, “
Aerodynamics of a Bio-Inspired Flexible Flapping-Wing Micro Air Vehicle
,”
Bioinspiration Biomimetics
,
6
(
4
), p.
045002
.
5.
Keennon
,
M.
,
Klingebiel
,
K.
,
Won
,
H.
, and
Andriukov
,
A.
,
2012
, “
Development of the Nano Hummingbird: A Tailless Flapping Wing Micro Air Vehicle
,”
AIAA
Paper No. 2012-0588.
6.
Nguyen
,
Q.-V.
,
Chan
,
W. L.
, and
Debiasi
,
M.
,
2016
, “
Hybrid Design and Performance Tests of a Hovering Insect-Inspired Flapping-Wing Micro Aerial Vehicle
,”
J. Bionic Eng.
,
13
(
2
), pp.
235
248
.
7.
Richter
,
C.
, and
Lipson
,
H.
,
2011
, “
Untethered Hovering Flapping Flight of a 3D-Printed Mechanical Insect
,”
Artif. Life
,
17
(
2
), pp.
73
86
.
8.
Pesavento
,
U.
, and
Wang
,
Z. J.
,
2009
, “
Flapping Wing Flight Can save Aerodynamic Power Compared to Steady Flight
,”
Phys. Rev. Lett.
,
103
(
11
), p.
118102
.
9.
Shyy
,
W.
,
Kang
,
C.-K.
,
Chirarattananon
,
P.
,
Ravi
,
S.
, and
Liu
,
H.
,
2016
, “
Aerodynamics, Sensing and Control of Insect-Scale Flapping-Wing Flight
,”
Proc. R. Soc. A
,
472
(
2186
), p.
20150712
.
10.
Karydis
,
K.
, and
Kumar
,
V.
,
2017
, “
Energetics in Robotic Flight at Small Scales
,”
Interface Focus
,
7
(
1
), p.
20160088
.
11.
Bruggeman
,
B.
,
2010
, “
Improving Flight Performance of Delfly ii in Hover by Improving Wing Design and Driving Mechanism
,” Master's thesis, TU Delft, Delft, The Netherlands.
12.
de Croon
,
G.
,
Percin
,
M.
,
Remes
,
B.
,
Ruijsink
,
R.
, and
de Wagter
,
C.
,
2016
,
The Delfly: Design, Aerodynamics, and Artificial Intelligence of a Flapping Wing Robot
,
Springer
, Dordrecht, The Netherlands.
13.
Alexander
,
R. M.
, and
Bennet-Clark
,
H.
,
1977
, “
Storage of Elastic Strain Energy in Muscle and Other Tissues
,”
Nature
,
265
(
5590
), pp.
114
117
.
14.
Dickinson
,
M. H.
, and
Lighton
,
J. R.
,
1995
, “
Muscle Efficiency and Elastic Storage in the Flight Motor of Drosophila
,”
Science
,
268
(5207), pp.
87
87
.
15.
Alexander
,
R. M.
,
1995
, “
Springs for Wings
,”
Science
,
268
(
5207
), pp.
50
52
.
16.
Ellington
,
C. P.
,
1999
, “
The Novel Aerodynamics of Insect Flight: Applications to Micro-Air Vehicles
,”
J. Exp. Biol.
,
202
(
23
), pp.
3439
3448
.http://jeb.biologists.org/content/202/23/3439
17.
Madangopal
,
R.
,
Khan
,
Z. A.
, and
Agrawal
,
S. K.
,
2005
, “
Biologically Inspired Design of Small Flapping Wing Air Vehicles Using Four-Bar Mechanisms and Quasi-Steady Aerodynamics
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
809
816
.
18.
Bolsman
,
C.
,
Goosen
,
J.
, and
Van Keulen
,
F.
,
2009
, “
Design Overview of a Resonant Wing Actuation Mechanism for Application in Flapping Wing Mavs
,”
Int. J. Micro Air Veh.
,
1
(
4
), pp.
263
272
.
19.
Ramananarivo
,
S.
,
Godoy-Diana
,
R.
, and
Thiria
,
B.
,
2011
, “
Rather Than Resonance, Flapping Wing Flyers May Play on Aerodynamics to Improve Performance
,”
Proc. Natl. Acad. Sci. U.S.A
,
108
(
15
), pp.
5964
5969
.
20.
Kok
,
J.
, and
Chahl
,
J.
,
2014
, “
Systems-Level Analysis of Resonant Mechanisms for Flapping-Wing Flyers
,”
J. Aircr.
,
51
(
6
), pp.
1833
1841
.
21.
Kok
,
J.
,
Lau
,
G.
, and
Chahl
,
J.
,
2016
, “
On the Aerodynamic Efficiency of Insect-Inspired Micro Aircraft Employing Asymmetrical Flapping
,”
J. Aircr.
,
53
(
3
), pp.
800
810
.
22.
Zhang
,
J.
, and
Deng
,
X.
,
2017
, “
Resonance Principle for the Design of Flapping Wing Micro Air Vehicles
,”
IEEE Trans. Rob.
,
33
(
1
), pp.
183
197
.
23.
Zhang
,
C.
, and
Rossi
,
C.
,
2017
, “
A Review of Compliant Transmission Mechanisms for Bio-Inspired Flapping-Wing Micro Air Vehicles
,”
Bioinspiration Biomimetics
,
12
(
2
), p.
025005
.
24.
Baek
,
S. S.
,
Ma
,
K. Y.
, and
Fearing
,
R. S.
,
2009
, “
Efficient Resonant Drive of Flapping-Wing Robots
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009,
pp.
2854
2860
.
25.
Campolo
,
D.
,
Azhar
,
M.
,
Lau
,
G.-K.
, and
Sitti
,
M.
,
2014
, “
Can dc Motors Directly Drive Flapping Wings at High Frequency and Large Wing Strokes?
,”
IEEE/ASME Trans. Mechatronics
,
19
(
1
), pp.
109
120
.
26.
Hines
,
L.
,
Campolo
,
D.
, and
Sitti
,
M.
,
2014
, “
Liftoff of a Motor-Driven, Flapping-Wing Microaerial Vehicle Capable of Resonance
,”
IEEE Trans. Rob.
,
30
(
1
), pp.
220
232
.
27.
Lau
,
G.-K.
,
Chin
,
Y.-W.
,
Goh
,
J. T.-W.
, and
Wood
,
R. J.
,
2014
, “
Dipteran-Insect-Inspired Thoracic Mechanism With Nonlinear Stiffness to save Inertial Power of Flapping-Wing Flight
,”
IEEE Trans. Rob.
,
30
(
5
), pp.
1187
1197
.
28.
Tang
,
B.
,
Meng
,
X.
,
Zhang
,
F.
,
Brennan
,
M. J.
,
Lau
,
G.-K.
,
Wang
,
Z.
, and
Feng
,
L.
,
2017
, “
Theoretical and Practical Investigation Into the Use of a Bio-Inspired “Click” Mechanism for the Flight Motor of a Micro Air Vehicle
,”
Int. J. Micro Air Veh.
,
9
(
2
), pp.
136
145
.
29.
Sahai
,
R.
,
Galloway
,
K. C.
, and
Wood
,
R. J.
,
2013
, “
Elastic Element Integration for Improved Flapping-Wing Micro Air Vehicle Performance
,”
IEEE Trans. Rob.
,
29
(
1
), pp.
32
41
.
30.
Lesage
,
F.
,
Hamel
,
N.
,
Huang
,
X.
,
Yuan
,
W.
,
Khalid
,
M.
, and
Zdunich
,
P.
,
2008
, “
Initial Investigation on the Aerodynamic Performance of Flapping Wings for Nano Air Vehicles
,” Defence Research & Development Canada, Valcartier, Quebec, Canada, Report No.
TM2007-550
.http://www.dtic.mil/dtic/tr/fulltext/u2/a479341.pdf
31.
Nachtigall
,
W.
,
1981
, “
Insect Flight Aerodynamics
,”
Locomotion and Energetics in Arthropods
,
Springer
, Boston, MA, pp.
127
162
.
32.
Ellington
,
C.
,
1984
, “
The Aerodynamics of Hovering Insect Flight. i. the Quasi-Steady Analysis
,”
Philos. Trans. R. Soc. London. Ser. B, Biol. Sci.
,
305
(
1122
), pp.
1
15
.
33.
Sane
,
S. P.
,
2003
, “
The Aerodynamics of Insect Flight
,”
J. Exp. Biol.
,
206
(
Pt. 23
), pp.
4191
4208
.
34.
Shyy
,
W.
,
Lian
,
Y.
,
Tang
,
J.
,
Viieru
,
D.
, and
Liu
,
H.
,
2007
,
Aerodynamics of Low Reynolds Number Flyers
, Vol.
22
,
Cambridge University Press
, New York.
35.
Berg
,
C.
, and
Rayner
,
J.
,
1995
, “
The Moment of Inertia of Bird Wings and the Inertial Power Requirement for Flapping Flight
,”
J. Exp. Biol.
,
198
(
8
), pp.
1655
1664
.http://jeb.biologists.org/content/198/8/1655.long
36.
Dickinson
,
M. H.
,
Lehmann
,
F.-O.
, and
Sane
,
S. P.
,
1999
, “
Wing Rotation and the Aerodynamic Basis of Insect Flight
,”
Science
,
284
(
5422
), pp.
1954
1960
.
37.
Chronister
,
N.
,
2017
, “
Full History of Ornithopters
,” The Ornithopter Society, Buffalo, NY, accessed Mar. 1, 2017, https://ornithopter.org/history.full.shtml
38.
Nguyen
,
Q. V.
,
Chan
,
W. L.
, and
Debiasi
,
M.
,
2017
, “
Experimental Investigation of Wing Flexibility on Force Generation of a Hovering Flapping Wing Micro Air Vehicle With Double Wing Clap-and-Fling Effects
,”
Int. J. Micro Air Veh.
,
9
(
3
), pp.
187
197
.
39.
Zhao
,
L.
,
Huang
,
Q.
,
Deng
,
X.
, and
Sane
,
S. P.
,
2010
, “
Aerodynamic Effects of Flexibility in Flapping Wings
,”
J. R. Soc. Interface
,
7
(
44
), pp.
485
497
.
40.
Kang
,
C.-K.
, and
Shyy
,
W.
,
2014
, “
Analytical Model for Instantaneous Lift and Shape Deformation of an Insect-Scale Flapping Wing in Hover
,”
J. R. Soc. Interface
,
11
(
101
), p.
20140933
.
41.
Lee
,
Y.
,
Lua
,
K.
,
Lim
,
T.
, and
Yeo
,
K.
,
2016
, “
A Quasi-Steady Aerodynamic Model for Flapping Flight With Improved Adaptability
,”
Bioinspiration Biomimetics
,
11
(
3
), p.
036005
.
42.
Bayiz
,
Y.
,
Ghanaatpishe
,
M.
,
Fathy
,
H.
, and
Cheng
,
B.
,
2018
, “
Hovering Efficiency Comparison of Rotary and Flapping Flight for Rigid Rectangular Wings Via Dimensionless Multi-Objective Optimization
,”
Bioinspiration Biomimetics
,
13
(
4
), p.
046002
.
43.
Calogero
,
J.
,
Frecker
,
M.
,
Hasnain
,
Z.
, and
Hubbard
,
J. E.
,
2018
, “
Tuning of a Rigid-Body Dynamics Model of a Flapping Wing Structure With Compliant Joints
,”
ASME J. Mech. Rob.
,
10
(
1
), p.
011007
.
44.
Dupont
, 2017, “
Kapton: Summary of Properties
,” DuPont High Performance Films, Circleville, OH, Mar. 1, 2017, http://www.dupont.com/content/dam/dupont/products-and-services/membranes-and-films/polyimde-films/documents/DEC-Kapton- summary-of-properties.pdf
45.
Wood
,
R.
,
Avadhanula
,
S.
,
Sahai
,
R.
,
Steltz
,
E.
, and
Fearing
,
R.
,
2008
, “
Microrobot Design Using Fiber Reinforced Composites
,”
ASME J. Mech. Des.
,
130
(
5
), p.
052304
.
46.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
, New York.
47.
Lau
,
G.
,
Goosen
,
J.
,
Van Keulen
,
F.
,
French
,
P.
, and
Sarro
,
P.
,
2006
, “
Actuated Elastomers With Rigid Vertical Electrodes
,”
J. Micromech. Microeng.
,
16
(
6
), p.
S35
.
48.
DeMario
,
A.
, and
Zhao
,
J.
,
2018
, “
Development and Analysis of a Three-Dimensional Printed Miniature Walking Robot With Soft Joints and Links
,”
ASME J. Mech. Rob.
,
10
(
4
), p.
041005
.
49.
Wang
,
P. L.
, and
McCarthy
,
J. M.
,
2018
, “
Design of a Flapping Wing Mechanism to Coordinate Both Wing Swing and Wing Pitch
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
025003
.
50.
Thomson
,
W. T.
, and
Dahleh
,
M. D.
,
1998
,
Theory of Vibration With Applications
, 5 ed.,
Prentice Hall
,
Upper Saddle River, NJ
.
51.
Harrington
,
A. M.
, and
Kroninger
,
C.
,
2013
, “
Characterization of Small dc Brushed and Brushless Motors
,” Army Research Lab Vehicle Technology Directorate, Aberdeen Proving Ground, MD, Report No.
ARL-TR-6389
.http://www.dtic.mil/dtic/tr/fulltext/u2/a577582.pdf
52.
Muzar
,
D.
, and
Lanteigne
,
E.
,
2016
, “
Experimental Characterization of Brushless dc Motors and Propellers for Flight Application
,”
Canadian Society for Mechanical Engineering International Congress
, Kelowna, BC, Canada, pp.
16
20
.
53.
Wood
,
R. J.
,
2008
, “
The First Takeoff of a Biologically Inspired at-Scale Robotic Insect
,”
IEEE Trans. Rob.
,
24
(
2
), pp.
341
347
.
54.
Leishman
,
G. J.
,
2006
,
Principles of Helicopter Aerodynamics With CD Extra
,
Cambridge University Press
, Cambridge, UK.
55.
Ramasamy
,
M.
,
Leishman
,
J. G.
, and
Lee
,
T. E.
,
2007
, “
Flowfield of a Rotating-Wing Micro Air Vehicle
,”
J. Aircraft
,
44
(
4
), pp.
1236
1244
.
You do not currently have access to this content.