Abstract

Soft robotics offers unprecedented adaptability and safety in human–machine interactions but faces challenges in achieving energy-efficient bidirectional movement with simplified pneumatic systems. This study introduces an innovative soft pneumatic actuator design concept with high efficiency inspired by inchworm locomotion, featuring a single air pathway for bidirectional control. The design utilizes a unique 45 deg sloped tail and strategically placed contact areas, enabling efficient bidirectional movement through a stick-slip mechanism controlled by modulating air pressure and actuation frequency. The study demonstrates a 31.2% reduction in internal energy consumption and a 36.4% improvement in energy-to-motion efficiency compared to conventional designs with complicated structures. New metrics, including the energy efficiency ratio (EER), internal energy, kinetic energy, and bending efficiency (BE), are introduced to evaluate actuator performance. The study reveals an exponential relationship between bending angle and length to height (L/H), with θmax of 71 deg at the lowest L/H ratio. Rigorous testing across diverse surface conditions validates the efficiency of the approach, with the actuator demonstrating consistent performance on surfaces with static friction coefficients ranging from 0.3 to 1.7. Analysis of bending dynamics, velocity characteristics, and energy consumption across various pressure ranges (100–400 kPa) and frequencies (1/8 Hz to 1.0 Hz) provides a framework for fine-tuning soft actuators. This research contributes to the design of energy-efficient soft robotics, paving the way for more adaptable and energy-conscious systems with potential applications in medical devices, industrial manipulators, and confined space exploration.

References

1.
Lee
,
C.
,
Kim
,
M.
,
Kim
,
Y. J.
,
Hong
,
N.
,
Ryu
,
S.
,
Kim
,
H. J.
, and
Kim
,
S.
,
2017
, “
Soft Robot Review
,”
Int. J. Control Autom. Syst.
,
15
(
1
), pp.
3
15
.
2.
Behzadfar
,
M.
, and
Song
,
K.-Y.
,
2024
, “
Innovative Design for Enhanced Adaptability and Performance of Soft Inchworm Robot
,”
2024 4th International Conference on Computer, Control and Robotics (ICCCR 2024)
,
Shanghai, China
,
Apr. 19–21
, pp.
257
263
.
3.
Joyee
,
B.
, and
Pan
,
Y.
,
2019
, “
A Fully Three-Dimensional Printed Inchworm-Inspired Soft Robot With Magnetic Actuation
,”
Soft Rob.
,
6
(
3
), pp.
333
345
.
4.
Sun
,
J.
,
Bauman
,
L.
,
Yu
,
L.
, and
Zhao
,
B.
,
2023
, “
Gecko-and-Inchworm-Inspired Untethered Soft Robot for Climbing on Walls and Ceilings
,”
Cellpress
,
4
(
2
), pp.
1
16
.
5.
Shen
,
H.
,
Cai
,
S.
,
Wang
,
Z.
,
Yuan
,
Z.
,
Yu
,
H.
, and
Yang
,
W.
,
2023
, “
A Programmable Inchworm-Inspired Soft Robot Powered by a Rotating Magnetic Field
,”
J. Bionic Eng.
,
20
(
2
), pp.
506
514
.
6.
Jung
,
W.
,
Lee
,
S.
, and
Hwang
,
Y.
,
2023
, “
Wireless Inchworm-Like Compact Soft Robot by Induction Heating of Magnetic Composite
,”
Micromachines
,
14
(
1
), pp.
1
11
.
7.
Thomas
,
S.
,
Germano
,
P.
,
Martinez
,
T.
, and
Perriard
,
Y.
,
2021
, “
An Untethered Mechanically-Intelligent Inchworm Robot Powered by a Shape Memory Alloy Oscillator
,”
Sens. Actuators, A
,
332
(
2
), pp.
1
7
.
8.
Hu
,
Q.
,
Dong
,
E.
,
Cheng
,
G.
,
Jin
,
H.
,
Yang
,
J.
, and
Sun
,
D.
,
2019
, “
Inchworm-Inspired Soft Climbing Robot Using Microspine Arrays
,”
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2019)
,
Macau, China
,
Nov. 3–8
, pp.
5800
5805
.
9.
Selvamuthu
,
M. G.
,
Tadakuma
,
R.
,
Fujiwara
,
N.
,
Yoshidab
,
K.
,
Takagia
,
M.
,
Hoshinoc
,
H.
,
Suzuri
,
Y.
, and
Furukawa
,
H.
,
2022
, “
Development of Soft Inchworm Robot With Friction Control of Feet Using Double-Network Gel
,”
J. Adv. Rob.
,
37
(
6
), pp.
407
422
.
10.
Chang
,
M.
,
Chae
,
S. H.
,
Yoo
,
H. J.
,
Kim
,
S.-H.
,
Kim
,
W.
, and
Cho
,
K.-J.
,
2019
, “
Loco-Sheet: Morphing Inchworm Robot Across Rough-Terrain
,”
2019 2nd IEEE International Conference on Soft Robotics (RoboSoft 2019)
,
Seoul, South Korea
,
Apr. 14–18 Apr
, pp.
808
813
.
11.
Vikas
,
V.
,
Cohen
,
E.
,
Grassi
,
R.
,
Sozer
,
C.
, and
Trimmer
,
B.
,
2016
, “
Design and Locomotion Control of a Soft Robot Using Friction Manipulation and Motor–Tendon Actuation
,”
IEEE Trans. Rob.
,
32
(
4
), pp.
949
959
.
12.
Chen
,
X.
,
Stegagno
,
P.
, and
Yuan
,
C.
,
2021
, “
A Cable-Driven Switching-Legged Inchworm Soft Robot: Design and Testing
,”
2021 American Control Conference (ACC 2021)
,
New Orleans, LA
,
May 25–28
, pp.
1
6
.
13.
Duduta
,
M.
,
Clarke
,
D. R.
, and
Wood
,
R. J.
,
2017
, “
A High-Speed Soft Robot Based on Dielectric Elastomer Actuators
,”
2017 IEEE International Conference on Robotics and Automation (ICRA 2017)
,
Singapore
,
May 29–June 3
, pp.
4346
4358
.
14.
Yang
,
Y.
,
Li
,
D.
, and
Shen
,
Y.
,
2019
, “
Inchworm-Inspired Soft Robot With Light-Actuated Locomotion
,”
IEEE Robot. Autom. Lett.
,
4
(
2
), pp.
1647
1652
.
15.
Gamus
,
B.
,
Salem
,
L.
,
Gat
,
A. D.
, and
Or
,
Y.
,
2020
, “
Understanding Inchworm Crawling for Soft-Robotics
,”
IEEE Robot. Autom. Lett.
,
5
(
2
), pp.
1397
1404
.
16.
Duggan
,
T.
,
Horowitz
,
L.
,
Ulug
,
A.
,
Baker
,
E.
, and
Petersen
,
K.
,
2019
, “
Inchworm-Inspired Locomotion in Untethered Soft Robots
,”
2019 2nd IEEE International Conference on Soft Robotics (RoboSoft 2019)
,
Seoul, Korea
,
Apr. 14–18
, pp.
200
206
.
17.
Kusunose
,
K.
,
Akagi
,
T.
,
Dohta
,
S.
,
Kobayashi
,
W.
,
Shinohara
,
T.
,
Hane
,
Y.
,
Hayashi
,
K.
, and
Aliff
,
M.
,
2020
, “
Development of Inchworm Type Pipe Inspection Robot Using Extension Type Flexible Pneumatic Actuators
,”
Int. J. Automot. Mech. Eng.
,
17
(
2
), pp.
8019
8028
.
18.
Lin
,
Y.
,
Xu
,
Y.
, and
Juang
,
J.-Y.
,
2022
, “
Single-Actuator Soft Robot for In-Pipe Crawling
,”
Soft Rob.
,
10
(
1
), pp.
174
186
.
19.
Lim
,
J.
,
Park
,
H.
,
An
,
J.
,
Hong
,
Y. S.
,
Kim
,
B.
, and
Yi
,
B. J.
,
2008
, “
One Pneumatic Line-Based Inchworm-Like Micro Robot for Half-Inch Pipe Inspection
,”
Mechatronics
,
18
(
2008
), pp.
315
322
.
20.
Lim
,
J.
,
Park
,
H.
,
Moon
,
S.
, and
Kim
,
B.
,
2007
, “
Pneumatic Robot Based on Inchworm Motion for Small Diameter Pipe Inspection
,”
2007 IEEE International Conference on Robotics and Biomimetics (IEEE ROBIO 2007)
,
Dec.
,
Sanya, China
,
Dec. 15–18
, pp.
330
335
.
21.
Manfredi
,
L.
,
Capoccia
,
E.
,
Ciuti
,
G.
, and
Cuschieri
,
A.
,
2019
, “
A Soft Pneumatic Inchworm Double Balloon (SPID) for Colonoscopy
,”
Nature
,
9
(
1
), pp.
1
9
.
22.
Kim
,
D. W.
,
Kim
,
J. I.
, and
Park
,
Y.-L.
,
2019
, “
A Simple Tripod Mobile Robot Using Soft
,”
IEEE Robot. Autom. Lett.
,
4
(
3
), pp.
1
7
.
23.
Yang
,
X.
,
Tan
,
R.
,
Lu
,
H.
, and
Shen
,
Y.
,
2021
, “
Starfish Inspired Milli Soft Robot With Omnidirectional Adaptive Locomotion Ability
,”
IEEE Robot. Autom. Lett.
,
6
(
2
), pp.
3325
3332
.
24.
Legrand
,
J.
,
Terryn
,
S.
,
Roels
,
E.
, and
Vanderborght
,
B.
,
2023
, “
Reconfigurable, Multi-Material, Voxel-Based Soft Robots
,”
IEEE Robot. Autom. Lett.
,
8
(
3
), pp.
1
8
.
25.
Paschal
,
T.
,
Bell
,
M. A.
,
Sperry
,
J.
,
Sieniewicz
,
S.
,
Wood
,
R. J.
, and
Weaver
,
J. C.
,
2019
, “
Design, Fabrication, and Characterization of an Untethered Amphibious Sea Urchin-Inspired Robot
,”
IEEE Robot. Autom. Lett.
,
4
(
4
), pp.
3348
3354
.
26.
Blumenschein
,
L. H.
,
Gan
,
L. T.
,
Fan
,
J. A.
,
Okamura
,
A. M.
, and
Hawkes
,
E. W.
,
2017
, “
A Tip-Extending Soft Robot Enables Reconfigurable and Deployable Antennas
,”
IEEE Robot. Autom. Lett.
,
3
(
2
), pp.
1
8
.
27.
Li
,
G.
,
Shintake
,
J.
, and
Hayashibe
,
M.
,
2023
, “
Soft-Body Dynamics Induces Energy Efficiency in Undulatory Swimming: A Deep Learning Study
,”
Front. Robot. AI
,
10
, p.
1102854
.
28.
G-Serchi
,
F.
, and
Weymouth
,
G.-D.
,
2017
, “
Underwater Soft Robotics, the Benefit of Body-Shape Variations in Aquatic Propulsion
,”
2017 Soft Robotics: Trends, Applications and Challenges (2017)
,
Livornom, Italy
,
Apr. 25–30
, pp.
37
46
.
29.
Yao
,
S.
,
Wang
,
T.
, and
Zhu
,
S.
,
2021
, “
Research on Energy Consumption of Fiber-Reinforced Fluidic Soft Actuators
,”
Smart Mater. Struct.
,
30
(
2
), pp.
1
9
.
30.
Joshi
,
S.
, and
Paik
,
J.
,
2020
, “
Pneumatic Supply System Parameter Optimization for Soft Actuators
,”
Soft Rob.
,
8
(
2
), pp.
1
21
.
31.
Wang
,
T.
, and
Ren
,
H.
,
2016
, “
Reduction of Power Consumption for Fluidic Soft Robots Using Energy Recovery Technique
,”
2016 IEEE International Conference on Information and Automation (2016)
,
Ningbo, China
,
July 31–Aug. 4
.
32.
Wang
,
T.
,
Yao
,
S.
, and
Zhu
,
S.
,
2022
, “
Energy-Saving Trajectory Optimization of a Fluidic Soft Robotic arm
,”
Smart Mater. Struct.
,
31
(
11
), pp.
1
13
.
33.
Katiyar
,
S. A.
,
Iida
,
F.
, and
Nurzaman
,
S. G.
,
2019
, “
Energy Harvesting in Soft Robot Locomotion With Complex Dynamics
,”
2019 IEEE Conference on Cybernetics and Intelligent Systems (2019)
,
Bangkok, Thailand
,
Nov. 18–20
, pp.
475
480
.
34.
Marchese
,
A. D.
,
Onal
,
C. D.
, and
Rus
,
D.
,
2011
, “
Soft Robot Actuators Using Energy-Efficient Valves Controlled by Electro-Permanent Magnets
,”
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (2011)
,
San Francisco, CA
,
Sept. 25–30
, pp.
756
761
.
35.
Zhou
,
X.
,
Majidi
,
C.
, and
O’Reilly
,
O. M.
,
2014
, “
Energy Efficiency in Friction-Based Locomotion Mechanisms for Soft and Hard Robots: Slower Can Be Faster
,”
Nonlinear Dyn.
,
78
(
4
), pp.
2811
2821
.
36.
Kelemenová
,
T.
,
Dovica
,
M.
,
Božek
,
P.
,
Koláriková
,
I.
,
Benedik
,
O.
,
Virgala
,
I.
,
Prada
,
E.
,
Miková
,
L.
,
Kot
,
T
,
Kelemen
,
M.
, et al
,
2020
, “
Specific Problems in Measurement of Coefficient of Friction Using Variable Incidence Tribometer
,”
Symmetry
,
12
(
1235
), pp.
1
21
.
37.
Sun
,
X.
,
Nose
,
A.
, and
Kohsaka
,
H.
,
2023
, “
A Vacuum-Actuated Soft Robot Inspired by Drosophila Larvae to Study Kinetics of Crawling Behaviour
,”
PLoS One
,
18
(
4
), pp.
1
18
.
38.
Li
,
G.
,
Qiu
,
W.
,
Wang
,
M.
,
Zhu
,
Y.
, and
Liu
,
F.
,
2024
, “
Development of an Earthworm-Based Soft Robot for Colon Sampling
,”
Front. Robot. AI
,
11
, pp.
1
10
.
39.
Ghazaly
,
M.
,
Mohdbasar
,
S. N.
, and
Lagani
,
M.
,
2021
, “
Design Optimization & Analysis of a Soft Crawling Robot
,”
Int. J. Integr. Eng.
,
13
(
6
), pp.
285
295
.
40.
Manns
,
M.
,
Morales
,
J. E.
, and
Sorensen
,
P. F.
,
2018
, “
Additive Manufacturing of Silicon Based PneuNets as Soft Robotic Actuators
,”
51st CIRP Conference on Manufacturing Systems
, Vol. 51,
Stockholm
,
May 16–18
, pp.
328
333
.
41.
Emminger
,
C.
,
Cakmak
,
U. D.
,
Preuer
,
R.
, and
Major
,
Z.
,
2021
, “
Hyperelastic Material Parameter Determination and Numerical Study of TPU and PDMS Dampers
,”
Materials
,
14
(
24
), pp.
1
16
.
42.
Hossen
,
M. I.
, and
Wang
,
C.
,
2024
, “
Material Properties Analysis of TPU 45A, 65A, and 85A for 3D Printed Clothing in Fashion Design: A Comparative Study
,”
Curr. Trends Fashion Technol. Text. Eng.
,
9
(
1
), pp.
1
4
.
43.
Tawk
,
C.
, and
Alici
,
G.
,
2024
, “
Finite Element Modeling in the Design Process of 3D Printed Pneumatic Soft Actuators and Sensors
,”
Robotics
,
9
(
32
), pp.
1
14
.
You do not currently have access to this content.