Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Recent advances in artificial intelligence (AI) have impacted various fields, including mechanical engineering. However, the development of diverse, high-quality datasets for structural analysis remains a challenge. Traditional datasets, like the jet engine bracket dataset, are limited by small sample sizes, hindering the creation of robust surrogate models. This study introduces the DeepJEB dataset, generated through deep generative models and automated simulation pipelines, to address these limitations. DeepJEB offers comprehensive 3D geometries and corresponding structural analysis data. Key experiments validated its effectiveness, showing significant improvements in surrogate model performance. Models trained on DeepJEB achieved up to a 23% increase in the coefficient of determination and over a 70% reduction in mean absolute percentage error (MAPE) compared to those trained on traditional datasets. These results underscore the superior generalization capabilities of DeepJEB. By supporting advanced modeling techniques, such as graph neural networks (GNNs) and convolutional neural networks (CNNs), DeepJEB enables more accurate predictions in structural performance. The DeepJEB dataset is publicly accessible online.

References

1.
Ramesh
,
A.
,
Dhariwal
,
P.
,
Nichol
,
A.
,
Chu
,
C.
, and
Chen
,
M.
,
2022
, “
Hierarchical Text-Conditional Image Generation With Clip Latents
,”
ArXiv
,
1
(
2
), p.
3
.
2.
Anil
,
R.
,
Borgeaud
,
S.
,
Alayrac
,
J.-B.
,
Yu
,
J.
,
Soricut
,
R.
,
Schalkwyk
,
J.
,
Dai
,
A. M.
,
Hauth
,
A.
,
Millican
,
K.
,
Silver
,
D.
, and
Johnson
,
M.
,
2023
, “
Gemini: A Family of Highly Capable Multimodal Models
,”
arXiv preprint
. https://arxiv.org/abs/2312.11805
3.
Achiam
,
J.
,
Adler
,
S.
,
Agarwal
,
S.
,
Ahmad
,
L.
,
Akkaya
,
I.
,
Aleman
,
F. L.
,
Almeida
,
D.
,
Altenschmidt
,
J.
,
Altman
,
S.
,
Anadkat
,
S.
, and
Avila
,
R.
,
2023
, “
Gpt-4 Technical Report
,”
arXiv preprint arXiv:2303.08774
.
4.
Shen
,
Y.
,
Song
,
K.
,
Tan
,
X.
,
Li
,
D.
,
Lu
,
W.
, and
Zhuang
,
Y.
,
2024
, “
Hugginggpt: Solving AI Tasks With Chatgpt and Its Friends in Hugging Face
,”
Adv. Neural Inform. Process. Syst.
,
36
.
5.
Bappy
,
M. A.
,
Ahmed
,
M.
, and
Rauf
,
M. A.
,
2024
, “
Exploring the Integration of Informed Machine Learning in Engineering Applications: A Comprehensive Review
,”
Am. J. Sci. Learn. Dev.
,
3
(
2
), pp.
11
21
.
6.
Patel
,
A. R.
,
Ramaiya
,
K. K.
,
Bhatia
,
C. V.
,
Shah
,
H. N.
, and
Bhavsar
,
S. N.
,
2021
, “
Artificial Intelligence: Prospect in Mechanical Engineering Field–a Review
,”
International Conference on Data Science and Intelligent Applications
,
Gujarat, India
,
Jan. 24-25
.
7.
Tapeh
,
A. T. G.
, and
Naser
,
M.
,
2023
, “
Artificial Intelligence, Machine Learning, and Deep Learning in Structural Engineering: a Scientometrics Review of Trends and Best Practices
,”
Arch. Comput. Methods Eng.
,
30
(
1
), pp.
115
159
.
8.
Oh
,
S.
,
Jung
,
Y.
,
Kim
,
S.
,
Lee
,
I.
, and
Kang
,
N.
,
2019
, “
Deep Generative Design: Integration of Topology Optimization and Generative Models
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111405
.
9.
Regenwetter
,
L.
,
Nobari
,
A. H.
, and
Ahmed
,
F.
,
2022
, “
Deep Generative Models in Engineering Design: A Review
,”
ASME J. Mech. Des.
,
144
(
7
), p.
071704
.
10.
Shu
,
D.
,
Cunningham
,
J.
,
Stump
,
G.
,
Miller
,
S. W.
,
Yukish
,
M. A.
,
Simpson
,
T. W.
, and
Tucker
,
C. S.
,
2020
, “
3d Design Using Generative Adversarial Networks and Physics-Based Validation
,”
ASME J. Mech. Des.
,
142
(
7
), p.
071701
.
11.
Wang
,
J.
,
Chen
,
W. W.
,
Da
,
D.
,
Fuge
,
M.
, and
Rai
,
R.
,
2022
, “
Ih-gan: A Conditional Generative Model for Implicit Surface-Based Inverse Design of Cellular Structures
,”
Comput. Methods. Appl. Mech. Eng.
,
396
, p.
115060
.
12.
Belani
,
H.
,
Vukovic
,
M.
, and
Car
,
Ž.
,
2019
, “
Requirements Engineering Challenges in Building AI-Based Complex Systems
,”
2019 IEEE 27th International Requirements Engineering Conference Workshops (REW)
,
Jeju, South Korea
,
Sept. 23–27
, IEEE, pp.
252
255
.
13.
Goh
,
G. D.
,
Sing
,
S. L.
, and
Yeong
,
W. Y.
,
2021
, “
A Review on Machine Learning in 3d Printing: Applications, Potential, and Challenges
,”
Artif. Intell. Rev.
,
54
(
1
), pp.
63
94
14.
Zhang
,
W.
,
Li
,
H.
,
Li
,
Y.
,
Liu
,
H.
,
Chen
,
Y.
, and
Ding
,
X.
,
2021
, “
Application of Deep Learning Algorithms in Geotechnical Engineering: A Short Critical Review
,”
Artif. Intell. Rev.
,
54
(
8
), pp.
5633
5673
.
15.
Chang
,
R.
,
Wang
,
Y.-X.
, and
Ertekin
,
E.
,
2022
, “
Towards Overcoming Data Scarcity in Materials Science: Unifying Models and Datasets With a Mixture of Experts Framework
,”
npj Comput. Mater.
,
8
(
1
), p.
242
.
16.
Cunningham
,
J. D.
,
Simpson
,
T. W.
, and
Tucker
,
C. S.
,
2019
, “
An Investigation of Surrogate Models for Efficient Performance-Based Decoding of 3d Point Clouds
,”
ASME J. Mech. Des.
,
141
(
12
), p.
121401
.
17.
Du
,
P.
,
Zhu
,
X.
, and
Wang
,
J.-X.
,
2022
, “
Deep Learning-Based Surrogate Model for Three-dimensional Patient-specific Computational Fluid Dynamics
,”
Phys. Fluids
,
34
(
8
). .
Article 081906
.
18.
Li
,
J.
,
Cai
,
J.
, and
Qu
,
K.
,
2019
, “
Surrogate-Based Aerodynamic Shape Optimization With the Active Subspace Method
,”
Struct. Multidiscipl. Optim.
,
59
(
2
), pp.
403
419
.
19.
Li
,
J.
,
Du
,
X.
, and
Martins
,
J. R.
,
2022
, “
Machine Learning in Aerodynamic Shape Optimization
,”
Prog. Aerosp. Sci.
,
134
, p.
100849
.
20.
Umetani
,
N.
, and
Bickel
,
B.
,
2018
, “
Learning Three-Dimensional Flow for Interactive Aerodynamic Design
,”
ACM Trans. Graphics (TOG)
,
37
(
4
), pp.
1
10
.
21.
Maurizi
,
M.
,
Gao
,
C.
, and
Berto
,
F.
,
2022
, “
Predicting Stress, Strain and Deformation Fields in Materials and Structures With Graph Neural Networks
,”
Sci. Rep.
,
12
(
1
), p.
21834
.
22.
Yang
,
Z.
,
Dong
,
Y.
,
Deng
,
X.
, and
Zhang
,
L.
,
2022
, “
Amgnet: Multi-Scale Graph Neural Networks for Flow Field Prediction
,”
Connect. Sci.
,
34
(
1
), pp.
2500
2519
.
23.
Rosset
,
N.
,
Cordonnier
,
G.
,
Duvigneau
,
R.
, and
Bousseau
,
A.
,
2023
, “Interactive Design of 2d Car Profiles With Aerodynamic Feedback,”
Computer Graphics Forum
, Vol.
42
,
K.
Myszkowski
, and
M.
Nießner
, eds.,
Wiley Online Library
,
Hoboken, NJ
, pp.
427
437
.
24.
Kim
,
S. W.
,
Kim
,
I.
,
Lee
,
J.
, and
Lee
,
S.
,
2021
, “
Knowledge Integration Into Deep Learning in Dynamical Systems: An Overview and Taxonomy
,”
J. Mech. Sci. Technol.
,
35
(
4
), pp.
1331
1342
.
25.
Whalen
,
E.
,
Beyene
,
A.
, and
Mueller
,
C.
,
2021
, “Simjeb: Simulated Jet Engine Bracket Dataset,”
Computer Graphics Forum
, Vol.
40
,
K.
Crane
,
and J.
Digne
, eds.,
Wiley Online Library
,
Hoboken, NJ
, pp.
9
17
.
26.
Willis
,
K. D.
,
Pu
,
Y.
,
Luo
,
J.
,
Chu
,
H.
,
Du
,
T.
,
Lambourne
,
J. G.
,
Solar-Lezama
,
A.
, and
Matusik
,
W.
,
2021
, “
Fusion 360 Gallery: A Dataset and Environment for Programmatic Cad Construction From Human Design Sequences
,”
ACM Trans. Graphics (TOG)
,
40
(
4
), pp.
1
24
.
27.
Wu
,
R.
,
Xiao
,
C.
, and
Zheng
,
C.
,
2021
, “
Deepcad: A Deep Generative Network for Computer-Aided Design Models
,”
Proceedings of the IEEE/CVF International Conference on Computer Vision
,
Montreal, QC, Canada
,
Oct. 11–17
, pp.
6772
6782
.
28.
Chang
,
A. X.
,
Funkhouser
,
T.
,
Guibas
,
L.
,
Hanrahan
,
P.
,
Huang
,
Q.
,
Li
,
Z.
,
Savarese
,
S.
,
Savva
,
M.
,
Song
,
S.
, and
Su
,
H.
,
2015
, “
Shapenet: An Information-Rich 3d Model Repository
,”
arXiv preprint arXiv:1512.03012
. https://arxiv.org/abs/1512.03012
29.
Koch
,
S.
,
Matveev
,
A.
,
Jiang
,
Z.
,
Williams
,
F.
,
Artemov
,
A.
,
Burnaev
,
E.
,
Alexa
,
M.
,
Zorin
,
D.
, and
Panozzo
,
D.
,
2019
, “
Abc: A Big CAD Model Dataset for Geometric Deep Learning
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Long Beach, CA
,
June 15–20
, pp.
9601
9611
.
30.
Wu
,
Z.
,
Song
,
S.
,
Khosla
,
A.
,
Yu
,
F.
,
Zhang
,
L.
,
Tang
,
X.
, and
Xiao
,
J.
,
2015
, “
3d Shapenets: A Deep Representation for Volumetric Shapes
,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
1912
1920
.
31.
Song
,
B.
,
Yuan
,
C.
,
Permenter
,
F.
,
Arechiga
,
N.
, and
Ahmed
,
F.
,
2023
, “Surrogate modeling of car drag coefficient with depth and normal renderings”. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 87301, American Society of Mechanical Engineers, p. V03AT03A029.
32.
Kim
,
S.
,
Chi
,
H.-g.
,
Hu
,
X.
,
Huang
,
Q.
, and
Ramani
,
K.
,
2020
, “
A Large-Scale Annotated Mechanical Components Benchmark for Classification and Retrieval Tasks With Deep Neural Networks
,” Computer Vision–ECCV 2020: 16th European Conference, Proceedings, Part XVIII 16, Glasgow, UK, Aug. 23–28,
Springer
, pp.
175
191
.
33.
Regenwetter
,
L.
,
Weaver
,
C.
, and
Ahmed
,
F.
,
2023
, “
FRAMED: An AutoML Approach for Structural Performance Prediction of Bicycle Frames
,”
Comput. Aid. Des.
,
156
.
34.
Bagazinski
,
N. J.
, and
Ahmed
,
F.
,
2023
, “
Ship-d: Ship Hull Dataset for Design Optimization Using Machine Learning
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2023
,
Boston, MA
,
Aug. 20–23
.
35.
Elrefaie
,
M.
,
Morar
,
F.
,
Dai
,
A.
, and
Ahmed
,
F.
,
2024
, “
DrivAerNet++: A Large-Scale Multimodal Car Dataset with Computational Fluid Dynamics Simulations and Deep Learning Benchmarks
,”
NeurIPS
. https://arxiv.org/abs/2406.09624
36.
Giannone
,
G.
,
Srivastava
,
A.
,
Winther
,
O.
, and
Ahmed
,
F.
,
2024
, “
Aligning Optimization Trajectories With Diffusion Models for Constrained Design Generation
,”
Adv. Neural Inform. Process. Syst.
,
36
.
37.
Mazé
,
F.
, and
Ahmed
,
F.
,
2023
, “
Diffusion Models Beat Gans on Topology Optimization
,”
Proceedings of the AAAI Conference on Artificial Intelligence
,
Washington, DC
,
Feb. 7–14
, Vol. 37, pp.
9108
9116
.
38.
Nie
,
Z.
,
Lin
,
T.
,
Jiang
,
H.
, and
Kara
,
L. B.
,
2021
, “
Topologygan: Topology Optimization Using Generative Adversarial Networks Based on Physical Fields Over the Initial Domain
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031715
.
39.
Shin
,
S.
,
Shin
,
D.
, and
Kang
,
N.
,
2023
, “
Topology Optimization Via Machine Learning and Deep Learning: A Review
,”
J. Comput. Design Eng.
,
10
(
4
), pp.
1736
1766
.
40.
Maksum
,
Y.
,
Amirli
,
A.
,
Amangeldi
,
A.
,
Inkarbekov
,
M.
,
Ding
,
Y.
,
Romagnoli
,
A.
,
Rustamov
,
S.
, and
Akhmetov
,
B.
,
2022
, “
Computational Acceleration of Topology Optimization Using Parallel Computing and Machine Learning Methods–analysis of Research Trends
,”
J. Indus. Inform. Integration
,
28
, p.
100352
.
41.
Mukherjee
,
S.
,
Lu
,
D.
,
Raghavan
,
B.
,
Breitkopf
,
P.
,
Dutta
,
S.
,
Xiao
,
M.
, and
Zhang
,
W.
,
2021
, “
Accelerating Large-Scale Topology Optimization: State-of-the-Art and Challenges
,”
Arch. Comput. Methods Eng.
,
28
(
7
), pp.
1
23
.
42.
Jang
,
S.
,
Yoo
,
S.
, and
Kang
,
N.
,
2022
, “
Generative Design by Reinforcement Learning: Enhancing the Diversity of Topology Optimization Designs
,”
Computer-Aided Design
,
146
, p.
103225
.
43.
Yoo
,
S.
,
Lee
,
S.
,
Kim
,
S.
,
Hwang
,
K. H.
,
Park
,
J. H.
, and
Kang
,
N.
,
2021
, “
Integrating Deep Learning Into CAD/CAE System: Generative Design and Evaluation of 3d Conceptual Wheel
,”
Struct. Multidiscipl. Optim.
,
64
(
4
), pp.
2725
2747
.
44.
Drela
,
M.
,
1989
, “
Xfoil: An Analysis and Design System for Low Reynolds Number Airfoils
,”
Low Reynolds Number Aerodynamics: Proceedings of the Conference Notre Dame
, IN, June 5–7,
Springer
, pp.
1
12
.
45.
Chen
,
W.
, and
Ahmed
,
F.
,
2021
, “
Padgan: Learning to Generate High-Quality Novel Designs
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031703
.
46.
Heyrani Nobari
,
A.
,
Chen
,
W.
, and
Ahmed
,
F.
,
2021
, “
Pcdgan: A Continuous Conditional Diverse Generative Adversarial Network for Inverse Design
,”
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining
,
Singapore
,
Aug. 14–18
, pp.
606
616
.
47.
Chen
,
W.
, and
Ahmed
,
F.
,
2021
, “
Mo-padgan: Reparameterizing Engineering Designs for Augmented Multi-objective Optimization
,”
Appl. Soft. Comput.
,
113
, p.
107909
.
48.
Saha
,
S.
,
Rios
,
T.
,
Minku
,
L. L.
,
Stein
,
B. V.
,
Wollstadt
,
P.
,
Yao
,
X.
,
Back
,
T.
,
Sendhoff
,
B.
, and
Menzel
,
S.
,
2021
, “
Exploiting Generative Models for Performance Predictions of 3d Car Designs
,”
2021 IEEE Symposium Series on Computational Intelligence (SSCI)
,
Orlando, FL
,
Dec. 5–7
, pp.
1
9
.
49.
Wollstadt
,
P.
,
Bujny
,
M.
,
Ramnath
,
S.
,
Shah
,
J. J.
,
Detwiler
,
D.
, and
Menzel
,
S.
,
2022
, “
Carhoods10k: An Industry-Grade Data Set for Representation Learning and Design Optimization in Engineering Applications
,”
IEEE Trans. Evolut. Comput.
,
26
(
6
), pp.
1221
1235
.
50.
Picard
,
C.
,
Schiffmann
,
J.
, and
Ahmed
,
F.
,
2023
, “
Dated: Guidelines for Creating Synthetic Datasets for Engineering Design Applications
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 20–23
.
51.
Guo
,
Y.
,
Wang
,
H.
,
Hu
,
Q.
,
Liu
,
H.
,
Liu
,
L.
, and
Bennamoun
,
M.
,
2020
, “
Deep Learning for 3d Point Clouds: A Survey
,”
IEEE Trans. Pattern. Anal. Mach. Intell.
,
43
(
12
), pp.
4338
4364
52.
Chaudhuri
,
S.
,
Ritchie
,
D.
,
Wu
,
J.
,
Xu
,
K.
, and
Zhang
,
H.
,
2020
, “Learning Generative Models of 3D Structures,”
STAR – State of The Art Report
, Vol. 39,
R.
Mantiuk
, and
V.
Sundstedt
, eds.,
John Wiley & Sons Ltd
,
Hoboken, NJ
, pp.
643
666
.
53.
Park
,
J. J.
,
Florence
,
P.
,
Straub
,
J.
,
Newcombe
,
R.
, and
Lovegrove
,
S.
,
2019
, “
Deepsdf: Learning Continuous Signed Distance Functions for Shape Representation
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Long Beach, CA
,
June 15–20
, pp.
165
174
.
54.
Chabra
,
R.
,
Lenssen
,
J. E.
,
Ilg
,
E.
,
Schmidt
,
T.
,
Straub
,
J.
,
Lovegrove
,
S.
, and
Newcombe
,
R.
,
2020
, “
Deep Local Shapes: Learning Local SDF Priors for Detailed 3d Reconstruction
,” Computer Vision–ECCV 2020: 16th European Conference, Proceedings, Part XXIX 16, Glasgow, UK, Aug. 23–28,
Springer
, pp.
608
625
.
55.
Mildenhall
,
B.
,
Srinivasan
,
P. P.
,
Tancik
,
M.
,
Barron
,
J. T.
,
Ramamoorthi
,
R.
, and
Ng
,
R.
,
2021
, “
Nerf: Representing Scenes as Neural Radiance Fields for View Synthesis
,”
Communicat. ACM
,
65
(
1
), pp.
99
106
.
56.
Umetani
,
N.
,
2017
, “
Exploring Generative 3D Shapes Using Autoencoder Networks
,”
SIGGRAPH Asia 2017 Technical Briefs
,
Bangkok, Thailand
,
Nov. 27–30
, pp. 24:1–24:4.
57.
Maturana
,
D.
, and
Scherer
,
S.
,
2015
, “
Voxnet: A 3d Convolutional Neural Network for Real-Time Object Recognition
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28– Oct. 2
, IEEE, pp.
922
928
.
58.
Li
,
Z.
,
Liu
,
F.
,
Yang
,
W.
,
Peng
,
S.
, and
Zhou
,
J.
,
2021
, “
A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
33
(
12
), pp.
6999
7019
.
59.
Qi
,
C. R.
,
Su
,
H.
,
Mo
,
K.
, and
Guibas
,
L. J.
,
2017
, “
Pointnet: Deep Learning on Point Sets for 3d Classification and Segmentation
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Honolulu, HI
,
July 21–26
, pp.
652
660
.
60.
Qi
,
C. R.
,
Yi
,
L.
,
Su
,
H.
, and
Guibas
,
L. J.
,
2017
, “
Pointnet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space
,”
Adv. Neural Inform. Process. Syst.
,
30
.
61.
Nash
,
C.
,
Ganin
,
Y.
,
Eslami
,
S. A.
, and
Battaglia
,
P.
,
2020
, “
Polygen: An Autoregressive Generative Model of 3d Meshes
,”
International Conference on Machine Learning
,
Virtual
,
July 12–18
, PMLR, pp.
7220
7229
.
62.
Gao
,
J.
,
Shen
,
T.
,
Wang
,
Z.
,
Chen
,
W.
,
Yin
,
K.
,
Li
,
D.
,
Litany
,
O.
,
Gojcic
,
Z.
, and
Fidler
,
S.
,
2022
, “
Get3d: A Generative Model of High Quality 3d Textured Shapes Learned From Images
,”
Adv. Neural Inform. Process. Syst.
,
35
, pp.
31841
31854
.
63.
Huang
,
Q.
,
Huang
,
X.
,
Sun
,
B.
,
Zhang
,
Z.
,
Jiang
,
J.
, and
Bajaj
,
C.
,
2021
, “
Arapreg: An as-Rigid-as Possible Regularization Loss for Learning Deformable Shape Generators
,”
Proceedings of the IEEE/CVF International Conference on Computer Vision
,
Montreal, QC, Canada
,
Oct. 11–17
, pp.
5815
5825
.
64.
Muralikrishnan
,
S.
,
Chaudhuri
,
S.
,
Aigerman
,
N.
,
Kim
,
V. G.
,
Fisher
,
M.
, and
Mitra
,
N. J.
,
2022
, “
Glass: Geometric Latent Augmentation for Shape Spaces
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
New Orleans, LA
,
June 18–24
, pp.
18552
18561
.
65.
Peng
,
D.
,
Merriman
,
B.
,
Osher
,
S.
,
Zhao
,
H.
, and
Kang
,
M.
,
1999
, “
A PDE-Based Fast Local Level Set Method
,”
J. Comput. Phys.
,
155
(
2
), pp.
410
438
.
66.
Osher
,
S.
,
Fedkiw
,
R.
, and
Piechor
,
K.
,
2004
, “
Level Set Methods and Dynamic Implicit Surfaces
,”
ASME Appl. Mech. Rev.
,
57
(
3
), pp.
B15
B15
.
67.
Jun
,
H.
, and
Nichol
,
A.
,
2023
, “
Shap-E: Generating Conditional 3D Implicit Functions
,”
arXiv
. https://arxiv.org/abs/2305.02463
68.
Hao
,
Z.
,
Averbuch-Elor
,
H.
,
Snavely
,
N.
, and
Belongie
,
S.
,
2020
, “
Dualsdf: Semantic Shape Manipulation Using a Two-Level Representation
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Seattle, WA
,
June 13–19
, pp.
7631
7641
.
69.
Mu
,
J.
,
Qiu
,
W.
,
Kortylewski
,
A.
,
Yuille
,
A.
,
Vasconcelos
,
N.
, and
Wang
,
X.
,
2021
, “
A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation
,”
Proceedings of the IEEE/CVF International Conference on Computer Vision
,
Montreal, QC, Canada
,
Oct. 11–17
, pp.
13001
13011
.
70.
Gokhale
,
N. S.
,
2008
,
Practical Finite Element Analysis
,
Finite to Infinite
,
Pune, India
.
71.
Knupp
,
P. M.
,
2001
, “
Algebraic Mesh Quality Metrics
,”
SIAM J. Sci. Comput.
,
23
(
1
), pp.
193
218
.
72.
Lorensen
,
W. E.
, and
Cline
,
H. E.
,
1998
, “Marching cubes: A High Resolution 3D Surface Construction Algorithm,”
SIGGRAPH Comput. Graph.
,
C. Stone
Maureen
, ed.,
Association for Computing Machinery (ACM)
,
New York
, pp.
347
353
.
73.
ALTAIR
, “
Accelerate Simulation-Driven Design — Altair Inspire
,” https://altair.com/inspire/, Accessed May 28, 2024.
74.
ALTAIR
, “
Multiphysics Workflows With CAD Associativity — Altair SimLab
,” https://altair.com/simlab/, Accessed May 28, 2024.
75.
Abambres
,
M.
, and
Arruda
,
M. R.
,
2016
, “
Finite Element Analysis of Steel Structures—A Review of Useful Guidelines
,”
Inter. J. Struct. Integrity
,
7
(
4
), pp.
490
515
.
76.
Higgins
,
I.
,
Matthey
,
L.
,
Pal
,
A.
,
Burgess
,
C. P.
,
Glorot
,
X.
,
Botvinick
,
M. M.
,
Mohamed
,
S.
, and
Lerchner
,
A.
,
2017
, “
beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework
,”
ICLR
,
Toulon, France
.
77.
Lakshminarayanan
,
B.
,
Pritzel
,
A.
, and
Blundell
,
C.
,
2017
, “
Simple and Scalable Predictive Uncertainty Estimation Using Deep Ensembles
,”
Adv. Neural Inform. Process. Syst.
,
30
.
78.
Open Knowledge Foundation
, “
Open Data Commons Attribution License (ODC-By) v1.0
,” https://opendatacommons.org/licenses/by/1-0/, Accessed June 10, 2024.
You do not currently have access to this content.