Abstract

Along with the rapid advancement of additive manufacturing technology, 3D-printed structures and materials have been successfully employed in various applications. Computer simulations of these structures and materials are often characterized by a vast number of spatial-varied parameters to predict the structural response of interest. Direct Monte Carlo methods are infeasible for uncertainty quantification and reliability assessment of such systems as they require a large number of forward model evaluations to obtain convergent statistics. To alleviate this difficulty, this paper presents a convolutional dimension-reduction method with knowledge reasoning-based loss regularization for surrogate modeling and uncertainty quantification of structures with high-dimensional spatial uncertainties. To manage the inherent high-dimensionality, a deep convolutional dimension-reduction network (ConvDR) is constructed to transform the spatial data into a low-dimensional latent space. In the latent space, knowledge reasoning is formulated as a form of loss regularization, and evolutionary algorithms are employed to train both the ConvDR network and a linear regression model as surrogate models for predicting the response of interest. 2D structures with spatial-variated material compositions are used to demonstrate the performance of the proposed approach.

References

1.
Chan
,
Y. C.
,
Da
,
D.
,
Wang
,
L.
, and
Chen
,
W.
,
2022
, “
Remixing Functionally Graded Structures: Data-Driven Topology Optimization With Multiclass Shape Blending
,”
Struct. Multidisc. Optim.
,
65
(
5
), p.
135
.
2.
Dong
,
Y.
,
Cheng
,
Z.
,
Gu
,
X.
, and
He
,
S.
,
2022
, “
Topology Optimization of Multi-gradient Composite
,”
Comput. Meth. Appl. Mech. Eng.
,
393
, p.
114751
.
3.
Liew
,
K. M.
,
Lei
,
Z. X.
, and
Zhang
,
L. W.
,
2015
, “
Mechanical Analysis of Functionally Graded Carbon Nanotube Reinforced Composites: A Review
,”
Compos. Struct.
,
120
, pp.
90
97
.
4.
Luo
,
Y.
,
Xing
,
J.
, and
Kang
,
Z.
,
2020
, “
Topology Optimization Using Material-Field Series Expansion and Kriging-Based Algorithm: An Effective Non-Gradient Method
,”
Comput. Meth. Appl. Mech. Eng.
,
364
, p.
112966
.
5.
Roy
,
C. J.
, and
Oberkampf
,
W. L.
,
2011
, “
A Comprehensive Framework for Verification, Validation, and Uncertainty Quantification in Scientific Computing
,”
Comput. Meth. Appl. Mech. Eng.
,
200
(
25–28
), pp.
2131
2144
.
6.
Wang
,
C.
, and
Matthies
,
H. G.
,
2019
, “
Epistemic Uncertainty-Based Reliability Analysis for Engineering System With Hybrid Evidence and Fuzzy Variables
,”
Comput. Meth. Appl. Mech. Eng.
,
355
, pp.
438
455
.
7.
Abdar
,
M.
,
Pourpanah
,
F.
,
Hussain
,
S.
,
Rezazadegan
,
D.
,
Liu
,
L.
,
Ghavamzadeh
,
M.
,
Fieguth
,
P.
, et al
,
2021
, “
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges
,”
Inf. Fusion.
,
76
, pp.
243
297
.
8.
Olivier
,
A.
,
Shields
,
M. D.
, and
Graham-Brady
,
L.
,
2021
, “
Bayesian Neural Networks for Uncertainty Quantification in Data-Driven Materials Modeling
,”
Comput. Meth. Appl. Mech. Eng.
,
386
, p.
114079
.
9.
Chan
,
S.
, and
Elsheikh
,
A. H.
,
2018
, “
A Machine Learning Approach for Efficient Uncertainty Quantification Using Multiscale Methods
,”
J. Comput. Phys.
,
354
, pp.
493
511
.
10.
Wang
,
Z.
,
2017
, “
Piecewise Point Classification for Uncertainty Propagation With Nonlinear Limit States
,”
Struct. Multidisc. Optim.
,
56
(
2
), pp.
285
296
.
11.
Ajenjo
,
A.
,
Ardillon
,
E.
,
Chabridon
,
V.
,
Iooss
,
B.
,
Cogan
,
S.
, and
Sadoulet-Reboul
,
E.
,
2022
, “
An Info-Gap Framework for Robustness Assessment of Epistemic Uncertainty Models in Hybrid Structural Reliability Analysis
,”
Struct. Saf.
,
96
, p.
102196
.
12.
Byun
,
J.-E.
, and
Royset
,
J. O.
,
2022
, “
Data-Driven Optimization of Reliability Using Buffered Failure Probability
,”
Struct. Saf.
,
98
, p.
102232
.
13.
Menz
,
M.
,
Dubreuil
,
S.
,
Morio
,
J.
,
Gogu
,
C.
,
Bartoli
,
N.
, and
Chiron
,
M.
,
2021
, “
Variance Based Sensitivity Analysis for Monte Carlo and Importance Sampling Reliability Assessment With Gaussian Processes
,”
Struct. Saf.
,
93
, p.
102116
.
14.
Shi
,
L.
,
Xiang
,
Y.
,
Pan
,
B.
, and
Li
,
Y.
,
2023
, “
An Efficient Adaptive Kriging Refinement Method for Reliability Analysis With Small Failure Probability
,”
Struct. Multidisc. Optim.
,
66
(
10
), pp.
1
21
.
15.
Cadini
,
F.
,
Lombardo
,
S. S.
, and
Giglio
,
M.
,
2020
, “
Global Reliability Sensitivity Analysis by Sobol-Based Dynamic Adaptive Kriging Importance Sampling
,”
Struct. Saf.
,
87
, p.
101998
.
16.
Li
,
M.
, and
Wang
,
Z.
,
2021
, “
An LSTM-Based Ensemble Learning Approach for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031702
.
17.
Keshtegar
,
B.
, and
Meng
,
Z.
,
2017
, “
A Hybrid Relaxed First-Order Reliability Method for Efficient Structural Reliability Analysis
,”
Struct. Saf.
,
66
, pp.
84
93
.
18.
Keshtegar
,
B.
, and
Chakraborty
,
S.
,
2018
, “
A Hybrid Self-Adaptive Conjugate First Order Reliability Method for Robust Structural Reliability Analysis
,”
Appl. Math. Model.
,
53
, pp.
319
332
.
19.
Zhou
,
Y.
,
Lu
,
Z.
,
Hu
,
J.
, and
Hu
,
Y.
,
2020
, “
Surrogate Modeling of High-Dimensional Problems Via Data-Driven Polynomial Chaos Expansions and Sparse Partial Least Square
,”
Comput. Meth. Appl. Mech. Eng.
,
364
, p.
112906
.
20.
Dai
,
H.
,
Zhang
,
R.
, and
Beer
,
M.
,
2023
, “
A New Method for Stochastic Analysis of Structures Under Limited Observations
,”
Mech. Syst. Signal Process.
,
185
, p.
109730
.
21.
Jiang
,
C.
,
Hu
,
Z.
,
Liu
,
Y.
,
Mourelatos
,
Z. P.
,
Gorsich
,
D.
, and
Jayakumar
,
P.
,
2020
, “
A Sequential Calibration and Validation Framework for Model Uncertainty Quantification and Reduction
,”
Comput. Meth. Appl. Mech. Eng.
,
368
, p.
113172
.
22.
Nannapaneni
,
S.
,
Hu
,
Z.
, and
Mahadevan
,
S.
,
2016
, “
Uncertainty Quantification in Reliability Estimation With Limit State Surrogates
,”
Struct. Multidisc. Optim.
,
54
(
6
), pp.
1509
1526
.
23.
Hong
,
L.
,
Li
,
H.
, and
Fu
,
J.
,
2022
, “
A Novel Surrogate-Model Based Active Learning Method for Structural Reliability Analysis
,”
Comput. Meth. Appl. Mech. Eng.
,
394
, p.
114835
.
24.
Bhattacharyya
,
B.
,
2022
, “
Uncertainty Quantification of Dynamical Systems by a POD–Kriging Surrogate Model
,”
J. Inf. Comput. Sci.
,
60
, p.
101602
.
25.
Wu
,
X.
,
Kozlowski
,
T.
, and
Meidani
,
H.
,
2018
, “
Kriging-Based Inverse Uncertainty Quantification of Nuclear Fuel Performance Code BISON Fission Gas Release Model Using Time Series Measurement Data
,”
Reliab. Eng. Syst. Saf.
,
169
, pp.
422
436
.
26.
Li
,
M.
, and
Wang
,
Z.
,
2019
, “
Active Resource Allocation for Reliability Analysis With Model Bias Correction
,”
ASME J. Mech. Des.
,
141
(
5
), p.
051403
.
27.
Wang
,
Z.
, and
Wang
,
P.
,
2014
, “
A Maximum Confidence Enhancement Based Sequential Sampling Scheme for Simulation-Based Design
,”
ASME J. Mech. Des.
,
136
(
2
), p.
021006
.
28.
Wang
,
D.
,
Zhang
,
D.
,
Meng
,
Y.
,
Yang
,
M.
,
Meng
,
C.
,
Han
,
X.
, and
Li
,
Q.
,
2023
, “
AK-HRn: An Efficient Adaptive Kriging-Based n-Hypersphere Rings Method for Structural Reliability Analysis
,”
Comput. Meth. Appl. Mech. Eng.
,
414
, p.
116146
.
29.
Xiao
,
T.
,
Park
,
C.
,
Lin
,
C.
,
Ouyang
,
L.
, and
Ma
,
Y.
,
2023
, “
Hybrid Reliability Analysis With Incomplete Interval Data Based on Adaptive Kriging
,”
Reliab. Eng. Syst. Saf.
,
237
, p.
109362
.
30.
Lu
,
N.
,
Li
,
Y.-F.
,
Huang
,
H.-Z.
,
Mi
,
J.
, and
Niazi
,
S. G.
,
2023
, “
AGP-MCS+ D: An Active Learning Reliability Analysis Method Combining Dependent Gaussian Process and Monte Carlo Simulation
,”
Reliab. Eng. Syst. Saf.
,
240
, p.
109541
.
31.
Li
,
M.
, and
Wang
,
Z.
,
2020
, “
Reliability-Based Multifidelity Optimization Using Adaptive Hybrid Learning
,”
ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
6
(
2
), p.
021005
.
32.
N
,
N.
, and
Chakraborty
,
S.
,
2022
, “
Surrogate Assisted Active Subspace and Active Subspace Assisted Surrogate—A New Paradigm for High Dimensional Structural Reliability Analysis
,”
Comput. Meth. Appl. Mech. Eng.
,
389
, p.
114374
.
33.
Rahman
,
S.
, and
Xu
,
H.
,
2004
, “
A Univariate Dimension-Reduction Method for Multi-dimensional Integration in Stochastic Mechanics
,”
Prob. Eng. Mech.
,
19
(
4
), pp.
393
408
.
34.
Xi
,
Z.
,
BD
,
Y.
, and
Hu
,
C
,
2010
,
Random Field Characterization Considering Statistical Dependence for Probability Analysis and Design
, p.
101008
.
35.
Zhou
,
T.
, and
Peng
,
Y.
,
2020
, “
Kernel Principal Component Analysis-Based Gaussian Process Regression Modelling for High-Dimensional Reliability Analysis
,”
Comput. Struct.
,
241
, p.
106358
.
36.
Li
,
M.
, and
Wang
,
Z.
,
2022
, “
Deep Reliability Learning With Latent Adaptation for Design Optimization Under Uncertainty
,”
Comput. Meth. Appl. Mech. Eng.
,
397
, p.
115130
.
37.
Tripathy
,
R. K.
, and
Bilionis
,
I.
,
2018
, “
Deep UQ: Learning Deep Neural Network Surrogate Models for High Dimensional Uncertainty Quantification
,”
J. Comput. Phys.
,
375
, pp.
565
588
.
38.
Zhu
,
Y.
,
Zabaras
,
N.
,
Koutsourelakis
,
P.-S.
, and
Perdikaris
,
P.
,
2019
, “
Physics-Constrained Deep Learning for High-Dimensional Surrogate Modeling and Uncertainty Quantification Without Labeled Data
,”
J. Comput. Phys.
,
394
, pp.
56
81
.
39.
Beyer
,
H.-G.
, and
Sendhoff
,
B.
,
2017
, “
Simplify Your Covariance Matrix Adaptation Evolution Strategy
,”
IEEE Trans. Evol. Comput.
,
21
(
5
), pp.
746
759
.
40.
Peng
,
B.
,
Wei
,
Y.
,
Qin
,
Y.
,
Dai
,
J.
,
Li
,
Y.
,
Liu
,
A.
,
Tian
,
Y.
,
Han
,
L.
,
Zheng
,
Y.
, and
Wen
,
P.
,
2023
, “
Machine Learning-Enabled Constrained Multi-Objective Design of Architected Materials
,”
Nat. Commun.
,
14
(
1
), p.
6630
.
41.
Wu
,
Y.
,
Gao
,
Y.
,
Zhang
,
N.
, and
Zhang
,
F.
,
2018
, “
Simulation of Spatially Varying Non-Gaussian and Nonstationary Seismic Ground Motions by the Spectral Representation Method
,”
J. Eng. Mech.
,
144
(
1
), p.
04017143
.
42.
Chen
,
Y.
,
Jiang
,
H.
,
Li
,
C.
,
Jia
,
X.
, and
Ghamisi
,
P.
,
2016
, “
Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks
,”
IEEE. Trans. Geosci. Remote Sens.
,
54
(
10
), pp.
6232
6251
.
43.
Liu
,
B.
,
Zhang
,
Q.
, and
Gielen
,
G. G. E.
,
2014
, “
A Gaussian Process Surrogate Model Assisted Evolutionary Algorithm for Medium Scale Expensive Optimization Problems
,”
IEEE Trans. Evol. Comput.
,
18
(
2
), pp.
180
192
.
44.
Eom
,
Y.-S.
,
Yoo
,
K.-S.
,
Park
,
J.-Y.
, and
Han
,
S.-Y.
,
2011
, “
Reliability-Based Topology Optimization Using a Standard Response Surface Method for Three-Dimensional Structures
,”
Struct. Multidisc. Optim.
,
43
(
2
), pp.
287
295
.
45.
Fernández
,
E.
,
Yang
,
K.
,
Koppen
,
S.
,
Alarcón
,
P.
,
Bauduin
,
S.
, and
Duysinx
,
P.
,
2020
, “
Imposing Minimum and Maximum Member Size, Minimum Cavity Size, and Minimum Separation Distance Between Solid Members in Topology Optimization
,”
Comput. Meth. Appl. Mech. Eng.
,
368
, p.
113157
.
46.
Higdon
,
D.
,
Gattiker
,
J.
,
Williams
,
B.
, and
Rightley
,
M.
,
2008
, “
Computer Model Calibration Using High-Dimensional Output
,”
J. Am. Statist. Assoc.
,
103
(
482
), pp.
570
583
.
47.
Pedersen
,
C. B. W.
,
Buhl
,
T.
, and
Sigmund
,
O.
,
2001
, “
Topology Synthesis of Large-Displacement Compliant Mechanisms
,”
Int. J. Numer. Meth. Eng.
,
50
(
12
), pp.
2683
2705
.
48.
Zhuang
,
Z.
,
Xie
,
Y. M.
, and
Zhou
,
S.
,
2021
, “
A Reaction Diffusion-Based Level Set Method Using Body-Fitted Mesh for Structural Topology Optimization
,”
Comput. Meth. Appl. Mech. Eng.
,
381
, p.
113829
.
You do not currently have access to this content.