Abstract

In this paper, a new efficient reliability-based topology optimization (RBTO) method is proposed for structures, in which the double-loop optimization is equivalently decoupled into a sequential process based on a performance shift strategy. First, a volume minimization RBTO formulation is built for structures considering displacement or compliance reliability constraints. Second, an efficient decoupling scheme is proposed to turn the double-loop RBTO into a series of deterministic topology optimization and reliability analysis. For the reliability analysis, the reliability probability is calculated based on the probability distribution function of the performance function, and the probability distribution function can be solved by the maximum entropy method based on the raw moments calculated by the multiplicative dimension reduction method. A performance shift strategy is then applied to build an equivalence between probabilistic constraint and deterministic constraint to formulate the deterministic topology optimization. Thirdly, the adjoint variable method is applied to obtain the sensitivity information for topological design variables, and a gradient-based optimization algorithm is used to update the design variables. Finally, four typical numerical examples are used to verify the advantage of the proposed method. Compared with the traditional sequential optimization and reliability assessment (SORA) method, the proposed RBTO method results in a design with a 5.4% smaller volume value to reach the same reliability index requirement for the cantilever beam, and the function calls are 354 times less than that of the SORA method.

References

1.
Eschenauer
,
H. A.
, and
Olhoff
,
N.
,
2001
, “
Topology Optimization of Continuum Structures: A Review
,”
ASME Appl. Mech. Rev.
,
54
(
4
), pp.
331
390
.
2.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization: Theory, Methods, and Applications
,
Springer
,
Berlin, Heidelberg
.
3.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Meth. Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
4.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
1999
, “
Material Interpolation Schemes in Topology Optimization
,”
Arch. Appl. Mech.
,
69
(
9–10
), pp.
635
654
.
5.
Sigmund
,
O.
,
2001
, “
A 99 Line Topology Optimization Code Written in Matlab
,”
Struct. Multidiscipl. Optim.
,
21
(
2
), pp.
120
127
.
6.
Xie
,
Y. M.
, and
Steven
,
G. P.
,
1993
, “
A Simple Evolutionary Procedure for Structural Optimization
,”
Comput. Struct.
,
49
(
5
), pp.
885
896
.
7.
Huang
,
X.
, and
Xie
,
Y. M.
,
2007
, “
Convergent and Mesh-Independent Solutions for the Bi-Directional Evolutionary Structural Optimization Method
,”
Finite Elem. Anal. Des.
,
43
(
14
), pp.
1039
1049
.
8.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Meth. Appl. Mech. Eng.
,
192
(
1–2
), pp.
227
246
.
9.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A. M.
,
2004
, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method
,”
J. Comput. Phys.
,
194
(
1
), pp.
363
393
.
10.
Maute
,
K.
,
2014
, “Topology Optimization Under Uncertainty,”
Topology Optimization in Structural and Continuum Mechanics
, Vol.
549
,
Springer, Vienna
, pp.
457
471
.
11.
Kim
,
C.
,
Wang
,
S. Y.
,
Bae
,
K. R.
,
Moon
,
H.
, and
Choi
,
K. K.
,
2006
, “
Reliability-Based Topology Optimization With Uncertainties
,”
J. Mech. Sci. Technol.
,
20
(
4
), pp.
494
504
.
12.
Jalalpour
,
M.
, and
Tootkaboni
,
M.
,
2016
, “
An Efficient Approach to Reliability-Based Topology Optimization for Continua Under Material Uncertainty
,”
Struct. Multidiscipl. Optim.
,
53
(
4
), pp.
759
772
.
13.
Kharmanda
,
G.
,
Olhoff
,
N.
,
Mohamed
,
A.
, and
Lemaire
,
M.
,
2005
, “
Reliability-Based Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
26
(
5
), pp.
295
307
.
14.
Wang
,
C.
,
Zhao
,
Z.
,
Zhou
,
M.
,
Sigmund
,
O.
, and
Zhang
,
X. S.
,
2021
, “
A Comprehensive Review of Educational Articles on Structural and Multidisciplinary Optimization
,”
Struct. Multidiscipl. Optim.
,
64
(
5
), pp.
2827
2880
.
15.
Guest
,
J. K.
, and
Igusa
,
T.
,
2008
, “
Structural Optimization Under Uncertain Loads and Nodal Locations
,”
Comput. Meth. Appl. Mech. Eng.
,
198
(
1
), pp.
116
124
.
16.
Wu
,
J. L.
,
Luo
,
Z.
,
Li
,
H.
, and
Zhang
,
N.
,
2017
, “
Level-Set Topology Optimization for Mechanical Metamaterials Under Hybrid Uncertainties
,”
Comput. Meth. Appl. Mech. Eng.
,
319
, pp.
414
441
.
17.
Zhao
,
J. P.
, and
Wang
,
C. J.
,
2014
, “
Robust Structural Topology Optimization Under Random Field Loading Uncertainty
,”
Struct. Multidiscipl. Optim.
,
50
(
3
), pp.
517
522
.
18.
Bjerager
,
P.
,
1990
, “
On Computation Methods for Structural Reliability Analysis
,”
Struct. Saf.
,
9
(
2
), pp.
79
96
.
19.
Hasofer
,
A. M.
, and
Lind
,
N. C.
,
1974
, “
Exact and Invariant Second-Moment Code Format
,”
ASCE J. Eng. Mech. Div.
,
100
(
1
), pp.
111
121
.
20.
Rackwitz
,
R.
, and
Flessler
,
B.
,
1978
, “
Structural Reliability Under Combined Random Load Sequences
,”
Comput. Struct.
,
9
(
5
), pp.
489
494
.
21.
Madsen
,
H. O.
,
Krenk
,
S.
, and
Lind
,
N. C.
,
2006
,
Methods of Structural Safety
,
Dover Publications
,
New York
.
22.
Wu
,
Y. T.
,
Millwater
,
H. R.
, and
Cruse
,
T. A.
,
1990
, “
Advanced Probabilistic Structural Analysis Method for Implicit Performance Functions
,”
AIAA J.
,
28
(
9
), pp.
1663
1669
.
23.
Jung
,
H. S.
, and
Cho
,
S.
,
2004
, “
Reliability-Based Topology Optimization of Geometrically Nonlinear Structures With Loading and Material Uncertainties
,”
Finite Elem. Anal. Des.
,
41
(
3
), pp.
311
331
.
24.
Maute
,
K.
, and
Frangopol
,
D. M.
,
2003
, “
Reliability-Based Design of MEMS Mechanisms by Topology Optimization
,”
Comput. Struct.
,
81
(
8–11
), pp.
813
824
.
25.
Wang
,
S.
,
Moon
,
H.
,
Kim
,
C.
,
Kang
,
J.
, and
Choi
,
K. K.
,
2005
, “
Reliability-Based Topology Optimization (RBTO)
,”
Proceedings of the IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials: Solid Mechanics and Its Applications
,
Rungstedgaard, Denmark
,
Oct. 26–29
, Vol. 137, pp.
493
504
.
26.
Luo
,
Y. J.
,
Zhou
,
M. D.
,
Wang
,
M. Y.
, and
Deng
,
Z. C.
,
2014
, “
Reliability Based Topology Optimization for Continuum Structures With Local Failure Constraints
,”
Comput. Struct.
,
143
, pp.
73
84
.
27.
Rozvany
,
G. I. N.
, and
Maute
,
K.
,
2011
, “
Analytical and Numerical Solutions for a Reliability-Based Benchmark Example
,”
Struct. Multidiscipl. Optim.
,
43
(
6
), pp.
745
753
.
28.
Kim
,
S. R.
,
Park
,
J. Y.
,
Lee
,
W. G.
,
Yu
,
J. S.
, and
Han
,
S. Y.
,
2007
, “
Reliability-Based Topology Optimization Based on Evolutionary Structural Optimization
,”
Int. J. Mech. Syst. Sci. Eng.
,
1
(
3
), pp.
135
139
.
29.
Cho
,
K. H.
,
Park
,
J. Y.
,
Ryu
,
S. P.
,
Park
,
J. Y.
, and
Han
,
S. Y.
,
2011
, “
Reliability-Based Topology Optimization Based on Bidirectional Evolutionary Structural Optimization Using Multi-Objective Sensitivity Numbers
,”
Int. J. Automot. Technol.
,
12
(
6
), pp.
849
856
.
30.
Deaton
,
J. D.
, and
Grandhi
,
R. V.
,
2014
, “
A Survey of Structural and Multidisciplinary Continuum Topology Optimization: Post 2000
,”
Struct. Multidiscl. Optim.
,
49
(
1
), pp.
1
38
.
31.
Duan
,
B. Y.
,
Templeman
,
A. B.
, and
Chen
,
J. J.
,
2000
, “
Entropy-Based Method for Topological Optimization of Truss Structures
,”
Comput. Struct.
,
75
(
5
), pp.
539
550
.
32.
Chen
,
X.
,
Hasselman
,
T. K.
, and
Neill
,
D. J.
,
1997
, “
Reliability Based Structural Design Optimization for Practical Applications
,”
Proceedings of the 38th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Kissimmee, FL
,
Apr. 7–10
, p.
1403
.
33.
Du
,
X. P.
, and
Chen
,
W.
,
2004
, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
225
233
.
34.
Jalalpour
,
M.
,
Guest
,
J. K.
, and
Igusa
,
T.
,
2013
, “
Reliability-Based Topology Optimization of Trusses With Stochastic Stiffness
,”
Struct. Saf.
,
43
, pp.
41
49
.
35.
Silva
,
M.
,
Tortorelli
,
D. A.
,
Norato
,
J. A.
,
Ha
,
C.
, and
Bae
,
H. R.
,
2010
, “
Component and System Reliability-Based Topology Optimization Using a Single-Loop Method
,”
Struct. Multidiscipl. Optim.
,
41
(
1
), pp.
87
106
.
36.
Nguyen
,
T. H.
,
Song
,
J.
, and
Paulino
,
G. H.
,
2011
, “
Single-Loop System Reliability-Based Topology Optimization Considering Statistical Dependence Between Limit-States
,”
Struct. Multidiscipl. Optim.
,
44
(
5
), pp.
593
611
.
37.
López
,
C.
,
Baldomir
,
A.
, and
Hernández
,
S.
,
2016
, “
Deterministic Versus Reliability-Based Topology Optimization of Aeronautical Structures
,”
Struct. Multidiscipl. Optim.
,
53
(
4
), pp.
907
921
.
38.
dos Santos
,
R. B.
,
Torii
,
A. J.
, and
Novotny
,
A. A.
,
2018
, “
Reliability-Based Topology Optimization of Structures Under Stress Constraints
,”
Int. J. Numer. Methods Eng.
,
114
(
6
), pp.
660
674
.
39.
Zheng
,
J.
,
Luo
,
Z.
,
Jiang
,
C.
,
Ni
,
B. Y.
, and
Wu
,
J. L.
,
2018
, “
Non-Probabilistic Reliability-Based Topology Optimization With Multidimensional Parallelepiped Convex Model
,”
Struct. Multidiscl. Optim.
,
57
(
6
), pp.
2205
2221
.
40.
Schuëller
,
G. I.
, and
Jensen
,
H. A.
,
2008
, “
Computational Methods in Optimization Considering Uncertainties—An Overview
,”
Comput. Meth. Appl. Mech. Eng.
,
198
(
1
), pp.
2
13
.
41.
Valdebenito
,
M. A.
, and
Schuëller
,
G. I.
,
2010
, “
A Survey on Approaches for Reliability-Based Optimization
,”
Struct. Multidiscipl. Optim.
,
42
(
5
), pp.
645
663
.
42.
Zhang
,
Z.
,
Deng
,
W.
, and
Jiang
,
C.
,
2020
, “
A PDF-Based Performance Shift Approach for Reliability-Based Design Optimization
,”
Comput. Meth. Appl. Mech. Eng.
,
374
, p.
113610
.
43.
Kiureghian
,
A. D.
,
Zhang
,
Y.
, and
Li
,
C. C.
,
1994
, “
Inverse Reliability Problem
,”
ASCE J. Eng. Mech.
,
120
(
5
), pp.
1154
1159
.
44.
Youn
,
B. D.
, and
Choi
,
K. K.
,
2004
, “
An Investigation of Nonlinearity of Reliability-Based Design Optimization Approaches
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
403
411
.
45.
Jaynes
,
E. T.
,
1957
, “
Information Theory and Statistical Mechanics
,”
Phys. Rev.
,
106
(
4
), pp.
620
630
.
46.
Zhang
,
X.
, and
Pandey
,
M. D.
,
2013
, “
Structural Reliability Analysis Based on the Concepts of Entropy, Fractional Moment and Dimensional Reduction Method
,”
Struct. Saf.
,
43
, pp.
28
40
.
47.
Bierig
,
C.
, and
Chernov
,
A.
,
2016
, “
Approximation of Probability Density Functions by the Multilevel Monte Carlo Maximum Entropy Method
,”
J. Comput. Phys.
,
314
, pp.
661
681
.
48.
Ghanem
,
R. G.
, and
Spanos
,
S. D.
,
1991
,
Stochastic Finite Elements: A Spectral Approach
,
Springer
,
Berlin
.
49.
Ganapathysubramanian
,
B.
, and
Zabaras
,
N.
,
2007
, “
Sparse Grid Collocation Schemes for Stochastic Natural Convection Problems
,”
J. Comput. Phys.
,
225
(
1
), pp.
652
685
.
50.
Rahman
,
S.
, and
Xu
,
H.
,
2004
, “
A Univariate Dimension-Reduction Method for Multi-Dimensional Integration in Stochastic Mechanics
,”
Probab. Eng. Mech.
,
19
(
4
), pp.
393
408
.
51.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
You do not currently have access to this content.