Abstract

This research examines how cognitive bias manifests in the design activities of graduate student design teams, with a particular focus on how to uncover evidence of these biases through survey-based data collection. After identifying bias in design teams, this work discusses those biases with consideration for the intent of error management, through the lens of adaptive rationality. Data were collected in one graduate-level design course across nine design teams over the course of a semester-long project. Results are shown for five different types of bias: bandwagon, availability, status quo, ownership, and hindsight biases. The conclusions drawn are based on trends and statistical correlations from survey data, as well as course deliverables. This work serves as a starting point for highlighting the most common forms of bias in design teams, with the goal of developing ways in which to mitigate those biases in future work.

References

1.
Haselton
,
M. G.
,
Bryant
,
G. A.
,
Wilke
,
A.
,
Frederick
,
D. A.
,
Galperin
,
A.
,
Frankenhuis
,
W. E.
, and
Moore
,
T.
,
2009
, “
Adaptive Rationality: An Evolutionary Perspective on Cognitive Bias
,”
Soc. Cogn.
,
27
(
5
), pp.
733
763
.
2.
Haselton
,
M. G.
,
Nettle
,
D.
, and
Murray
,
D. R.
,
2016
, “The Evolution of Cognitive Bias,”
Handbook of Evolutionary Psychology
,
D. M.
Buss
, ed.,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
3.
Fillingim
,
K. B.
,
Nwaeri
,
R. O.
,
Borja
,
F.
,
Fu
,
K.
, and
Paredis
,
C. J. J.
,
2019
, “
Design Heuristics: Extraction and Classification Methods With Jet Propulsion Laboratory’s Architecture Team
,”
ASME J. Mech. Des.
,
142
(
8
), p.
081101
.
4.
Fillingim
,
K. B.
,
Shapiro
,
H.
,
Fu
,
K.
, and
Paredis
,
C. J. J.
,
2019
, “
Process Heuristics: Extraction, Analysis, and Repository Considerations
,”
IEEE Syst. J.
,
14
(
4
), pp.
5148
5159
. doi:10.1109/JSYST.2019.2959538
5.
Toh
,
C. A.
,
Strohmetz
,
A. A.
, and
Miller
,
S. R.
,
2016
, “
The Effects of Gender and Idea Goodness on Ownership Bias in Engineering Design Education
,”
ASME J. Mech. Des.
,
138
(
10
), p.
101105
.
6.
Thaler
,
R. H.
,
1980
, “
Toward a Positive Theory of Consumer Choice
,”
J. Econ. Behav. Organ.
,
1
(
1
), pp.
39
60
.
7.
Kahneman
,
D.
,
Knetsch
,
J. L.
, and
Thaler
,
R. H.
,
1990
, “
Experimental Tests of the Endowment Effect and the Coase Theorem
,”
J. Polit. Econ.
,
98
(
6
), pp.
1325
1348
.
8.
Madrian
,
B. C.
, and
Shea
,
D. F.
,
2001
, “
The Power of Suggestion: Inertia in 401(K) Participation and Savings Behavior
,”
Q. J. Econ.
,
116
(
4
), pp.
1149
1187
.
9.
Samuelson
,
W.
, and
Zeckhauser
,
R.
,
1988
, “
Status Quo Bias in Decision Making
,”
J. Risk Uncertain.
,
1
(
1
), pp.
7
59
.
10.
Hu
,
M.
, and
Shealy
,
T.
,
2020
, “
Overcoming Status Quo Bias for Resilient Stormwater Infrastructure: Empirical Evidence in Neurocognition and Decision-Making
,”
J. Manage. Eng.
,
36
(
4
), p.
04020017
.
11.
Gilovich
,
T.
,
Griffin
,
D.
, and
Kahneman
,
D.
,
2002
,
Heuristics and Biases: The Psychology of Intuitive Judgment
,
Cambridge University Press
,
Cambridge, UK
.
12.
Hallihan
,
G. M.
,
Cheong
,
H.
, and
Shu
,
L. H.
,
2012
, “
Confirmation and Cognitive Bias in Design Cognition
,”
Presented at the ASME 2012 International Design Engineering Technical Conferences
,
Chicago, IL
,
Aug. 12–15
, pp.
913
924
.
13.
Rikkers
,
L. F.
,
2002
, “
The Bandwagon Effect
,”
J. Gastrointest. Surg.
,
6
(
6
), pp.
787
794
.
14.
Barnfield
,
M.
,
2020
, “
Think Twice Before Jumping on the Bandwagon: Clarifying Concepts in Research on the Bandwagon Effect
,”
Political Stud. Rev.
,
18
(
4
), pp.
553
574
.
15.
Gavious
,
A.
, and
Mizrahi
,
S.
,
2001
, “
A Continuous Time Model of the Bandwagon Effect in Collective Action
,”
Soc. Choice Welf.
,
18
(
1
), pp.
91
105
.
16.
Choi
,
S.-M.
,
Lee
,
H.
,
Han
,
Y.-S.
,
Man
,
K. L.
, and
Chong
,
W. K.
,
2015
, “
A Recommendation Model Using the Bandwagon Effect for E-Marketing Purposes in IoT
,”
Int. J. Distrib. Sens. Netw.
,
11
(
7
), p.
475163
.
17.
Kerin
,
T.
,
2018
, “
Accounting for Hindsight Bias: Improving Learning Through Interactive Case Studies
,”
Loss Prev. Bull.
,
264
, pp.
17
20
.
18.
Williams
,
C. B.
,
Gero
,
J.
,
Lee
,
Y.
, and
Paretti
,
M.
,
2011
, “
Exploring the Effect of Design Education on the Design Cognition of Mechanical Engineering Students
,”
ASME International Design Engineering Technical Conferences
,
Washington, DC
,
Aug. 28–31
, pp.
607
614
.
19.
Guaghran
,
W. F.
,
2002
, “
Cognitive Modelling for Engineers
,”
ASEE Annual Conference Proceedings
,
Montreal, QC, Canada
,
June 16 –19
,
pp. 7.297.1–7.297.13
.
20.
Cross
,
N.
,
2004
, “
Expertise in Design: An Overview
,”
Des. Stud.
,
25
(
5
), pp.
427
441
.
21.
Stanovich
,
K. E.
, and
West
,
R. F.
,
2008
, “
On the Relative Independence of Thinking Biases and Cognitive Ability
,”
J. Pers. Soc. Psychol.
,
94
(
4
), pp.
672
695
.
22.
Hallihan
,
G. M.
, and
Shu
,
L. H.
,
2013
, “
Considering Confirmation Bias in Design and Design Research
,”
J. Integr. Des. Process Sci.
,
17
(
4
), pp.
19
35
.
23.
Nelius
,
T.
,
Doellken
,
M.
,
Zimmerer
,
C.
, and
Matthiesen
,
S.
,
2020
, “
The Impact of Confirmation Bias on Reasoning and Visual Attention During Analysis in Engineering Design: An Eye Tracking Study
,”
Des. Stud.
,
71
, p.
100963
.
24.
Nelius
,
T.
, and
Matthiesen
,
S.
,
2019
, “
Experimental Evaluation of a Debiasing Method for Analysis in Engineering Design
,”
22nd International Conference on Engineering Design
,
Delft, The Netherlands
,
Aug. 5–8
, pp.
489
498
.
25.
Viswanathan
,
V.
, and
Linsey
,
J. S.
,
2013
, “
Role of Sunk Cost in Engineering Idea Generation: An Experimental Investigation
,”
ASME J. Mech. Des.
,
135
(
12
), p.
121002
.
26.
Zheng
,
X.
,
Ritter
,
S. C.
, and
Miller
,
S. R.
,
2018
, “
How Concept Selection Tools Impact the Development of Creative Ideas in Engineering Design Education
,”
ASME J. Mech. Des.
,
140
(
5
), p.
052002
.
27.
Yang
,
X. J.
,
Wickens
,
C. D.
, and
HöLttä-Otto
,
K.
,
2016
, “
How Users Adjust Trust in Automation: Contrast Effect and Hindsight Bias
,”
Human Factors and Ergonomics Society Annual Meeting
,
Los Angeles, CA
,
Sept. 19–23
, pp.
196
200
.
28.
Woods
,
D. D.
,
2003
, “
Creating Foresight: How Resilience Engineering Can Transform Nasa’s Approach to Risky Decision Making
,”
Work
,
4
(
2
), pp.
137
144
.
29.
Vermillion
,
S. D.
,
Malak
,
R. J.
,
Smallman
,
R.
, and
Linsey
,
J.
,
2015
, “
A Study on Outcome Framing and Risk Attitude in Engineering Decisions Under Uncertainty
,”
ASME J. Mech. Des.
,
137
(
8
), p.
084501
.
30.
Toh
,
C. A.
,
Strohmetz
,
A. A.
, and
Miller
,
S. R.
,
2016
, “
The Effects of Gender and Idea Goodness on Ownership Bias in Engineering Design Education
,”
ASME J. Mech. Des.
,
138
(
10
), p.
101105
.
31.
Zheng
,
X.
, and
Miller
,
S. R.
,
2019
, “
Is Ownership Bias Bad? The Influence of Idea Goodness and Creativity on Design Professionals Concept Selection Practices
,”
ASME J. Mech. Des.
,
141
(
2
), p.
021106
.
32.
Onarheim
,
B.
, and
Christensen
,
B. T.
,
2011
, “
Idea Screening in Engineering Design Using Employee-Driven Wisdom of the Crowds
,”
International Conference on Engineering Design
,
Copenhagen, Denmark
,
Aug. 15–18
.
33.
Austin-Breneman
,
J.
,
Yu
,
B. Y.
, and
Yang
,
M. C.
,
2016
, “
Biased Information Passing Between Subsystems Over Time in Complex System Design
,”
ASME J. Mech. Des.
,
138
(
1
), p.
011101
.
34.
Parsons
,
J.
, and
Saunders
,
C.
,
2004
, “
Cognitive Heuristics in Software Engineering Applying and Extending Anchoring and Adjustment to Artifact Reuse
,”
IEEE Trans. Softw. Eng.
,
30
(
12
), pp.
873
888
.
35.
Mohanani
,
R.
,
Salman
,
I.
,
Turhan
,
B.
,
Rodriguez
,
P.
, and
Ralph
,
P.
,
2020
, “
Cognitive Biases in Software Engineering: A Systematic Mapping Study
,”
IEEE Trans. Softw. Eng.
,
46
(
12
), pp.
1318
1339
.
36.
Stacey
,
M.
, and
Eckart
,
C.
,
1999
, “
CAD System Bias in Engineering Design
,”
International Conference on Engineering Design
,
Munich
,
Aug. 24–26
, Vol.
2
, pp.
923
928
.
37.
Jørgensen
,
M.
,
2013
, “
The Influence of Selection Bias on Effort Overruns in Software Development Projects
,”
Inf. Softw. Technol.
,
55
(
9
), pp.
1640
1650
.
38.
Nichols
,
A. L.
, and
Maner
,
J. K.
,
2008
, “
The Good-Subject Effect: Investigating Participant Demand Characteristics
,”
J. Gen. Psychol.
,
135
(
2
), pp.
151
165
.
You do not currently have access to this content.