Abstract

The concept of digital twins is to have a digital model that can replicate the behavior of a physical asset in real time. However, using digital models to reflect the structural performance of physical assets usually faces high computational costs, which makes it difficult for the model to satisfy real-time requirements. As a technique to replace expensive simulations, surrogate models have great potential to solve this problem. In practice, however, the optimal individual surrogate model (ISM) applicable to a given problem usually changes as factors change, and this can be mitigated by integrating multiple ISMs. Therefore, this paper proposes a scalable digital twin framework based on a novel adaptive ensemble surrogate model. This ensemble not only provides robust approximation but also reduces the additional cost brought by the ensemble by reducing the number of ISMs participating in the ensemble through multicriterion model screening. Moreover, based on the characteristics of the finite element method, a node rearrangement method, which provides scalability for the construction of a digital model, is proposed. That is, the distribution and number of nodes can be customized to not only decrease the computational cost by reducing nodes but also obtain the information at key positions by customizing the locations of nodes. Numerical experiments are employed to verify the performance of the proposed ensemble and node rearrangement method. A telehandler is used as an example to build a scalable digital twin, which proves the feasibility and effectiveness of the framework.

References

1.
Lai
,
X.
,
Wang
,
S.
,
Guo
,
Z.
,
Zhang
,
C.
,
Sun
,
W.
, and
Song
,
X.
,
2021
, “
Designing a Shape–Performance Integrated Digital Twin Based on Multiple Models and Dynamic Data: A Boom Crane Example
,”
ASME J. Mech. Des.
,
143
(
7
), p.
071703
.
2.
Lim
,
D.
,
Ong
,
Y. S.
,
Jin
,
Y.
, and
Sendhoff
,
B.
,
2007
, “
A Study on Metamodeling Techniques, Ensembles, and Multi-surrogates in Evolutionary Computation
,”
Proceedings of GECCO 2007: Genetic and Evolutionary Computation Conference
,
Boston, MA
,
July 9–13
, pp.
1288
1295
.
3.
Cheng
,
K.
, and
Lu
,
Z.
,
2020
, “
Structural Reliability Analysis Based on Ensemble Learning of Surrogate Models
,”
Struct. Saf.
,
83
, p.
101905
.
4.
Haag
,
S.
, and
Anderl
,
R.
,
2018
, “
Digital Twin—Proof of Concept
,”
Manuf. Lett.
,
15
, pp.
64
66
.
5.
Guivarch
,
D.
,
Mermoz
,
E.
,
Marino
,
Y.
, and
Sartor
,
M.
,
2019
, “
Creation of Helicopter Dynamic Systems Digital Twin Using Multibody Simulations
,”
CIRP Ann.
,
68
(
1
), pp.
133
136
.
6.
Fotland
,
G.
,
Haskins
,
C.
, and
Rølvåg
,
T.
,
2020
, “
Trade Study to Select Best Alternative for Cable and Pulley Simulation for Cranes on Offshore Vessels
,”
Syst. Eng.
,
23
(
2
), pp.
177
188
.
7.
Moi
,
T.
,
Cibicik
,
A.
, and
Rølvåg
,
T.
,
2020
, “
Digital Twin Based Condition Monitoring of a Knuckle Boom Crane: An Experimental Study
,”
Eng. Fail. Anal.
,
112
, pp.
1
10
.
8.
Magargle
,
R.
,
Johnson
,
L.
,
Mandloi
,
P.
,
Davoudabadi
,
P.
,
Kesarkar
,
O.
,
Krishnaswamy
,
S.
,
Batteh
,
J.
, and
Pitchaikani
,
A.
,
2017
, “
A Simulation-Based Digital Twin for Model-Driven Health Monitoring and Predictive Maintenance of an Automotive Braking System
,”
Proceedings of the 12th International Modelica Conference
,
Prague, Czech Republic
,
May 15–17
, pp.
35
46
.
9.
Kapteyn
,
M. G.
,
Knezevic
,
D. J.
, and
Willcox
,
K. E.
,
2020
, “
Toward Predictive Digital Twins via Component-Based Reduced-Order Models and Interpretable Machine Learning
,”
Proceedings of the AIAA Scitech 2020 Forum
,
Orlando, FL
,
Jan. 6–10
, pp.
1
19
.
10.
Kapteyn
,
M. G.
,
Knezevic
,
D. J.
,
Huynh
,
D. B. P.
,
Tran
,
M.
, and
Willcox
,
K. E.
,
2020
, “
Data-Driven Physics-Based Digital Twins via a Library of Component-Based Reduced-Order Models
,”
Int. J. Numer. Methods Eng.
,
123
(
13
), pp.
1
18
.
11.
Kapteyn
,
M. G.
,
Pretorius
,
J. V. R.
, and
Willcox
,
K. E.
,
2021
, “
A Probabilistic Graphical Model Foundation for Enabling Predictive Digital Twins at Scale
,”
Nat. Comput. Sci.
,
1
(
5
), pp.
337
347
.
12.
Sisson
,
W.
,
Karve
,
P.
, and
Mahadevan
,
S.
,
2022
, “
Digital Twin Approach for Component Health-Informed Rotorcraft Flight Parameter Optimization
,”
AIAA J.
,
60
(
3
), pp.
1923
1936
.
13.
Wang
,
S.
,
Lai
,
X.
,
He
,
X.
,
Qiu
,
Y.
, and
Song
,
X.
,
2022
, “
Building a Trustworthy Product-Level Shape-Performance Integrated Digital Twin With Multifidelity Surrogate Model
,”
ASME J. Mech. Des.
,
144
(
3
), p.
031703
.
14.
Lai
,
X.
,
He
,
X.
,
Wang
,
S.
,
Wang
,
X.
,
Sun
,
W.
, and
Song
,
X.
,
2022
, “
Building a Lightweight Digital Twin of a Crane Boom for Structural Safety Monitoring Based on a Multifidelity Surrogate Model
,”
ASME J. Mech. Des.
,
144
(
6
), p.
064502
.
15.
Dang
,
H. V.
,
Tatipamula
,
M.
, and
Nguyen
,
H. X.
,
2021
, “
Cloud-Based Digital Twinning for Structural Health Monitoring Using Deep Learning
,”
IEEE Trans. Ind. Informatics
,
3203
(
c
), pp.
1
11
.
16.
Perrone
,
M. P.
, and
Cooper
,
L. N.
,
1995
, “When Networks Disagree: Ensemble Methods for Hybrid Neural Networks,”
How We Learn; How We Remember: Toward An Understanding Of Brain And Neural Systems
,
World Scientific
,
Singapore
.
17.
Bishop
,
C.
,
1995
,
Neural Network for Pattern Recognition
,
Oxford University
,
British
.
18.
Zerpa
,
L. E.
,
Queipo
,
N. V.
,
Pintos
,
S.
, and
Salager
,
J. L.
,
2005
, “
An Optimization Methodology of Alkaline-Surfactant-Polymer Flooding Processes Using Field Scale Numerical Simulation and Multiple Surrogates
,”
J. Pet. Sci. Eng.
,
47
(
3–4
), pp.
197
208
.
19.
Goel
,
T.
,
Haftka
,
R. T.
,
Shyy
,
W.
, and
Queipo
,
N. V.
,
2007
, “
Ensemble of Surrogates
,”
Struct. Multidiscip. Optim.
,
33
(
3
), pp.
199
216
.
20.
Sanchez
,
E.
,
Pintos
,
S.
, and
Queipo
,
N. V.
,
2008
, “
Toward an Optimal Ensemble of Kernel-Based Approximations With Engineering Applications
,”
Struct. Multidiscip. Optim.
,
36
(
3
), pp.
247
261
.
21.
Acar
,
E.
, and
Rais-Rohani
,
M.
,
2009
, “
Ensemble of Metamodels With Optimized Weight Factors
,”
Struct. Multidiscip. Optim.
,
37
(
3
), pp.
279
294
.
22.
Viana
,
F. A. C.
,
Haftka
,
R. T.
, and
Steffen
,
V.
,
2009
, “
Multiple Surrogates: How Cross-validation Errors Can Help Us to Obtain the Best Predictor
,”
Struct. Multidiscip. Optim.
,
39
(
4
), pp.
439
457
.
23.
Ferreira
,
W. G.
, and
Serpa
,
A. L.
,
2016
, “
Ensemble of Metamodels: The Augmented Least Squares Approach
,”
Struct. Multidiscip. Optim.
,
53
(
5
), pp.
1019
1046
.
24.
Strömberg
,
N.
,
2021
, “
Comparison of Optimal Linear, Affine and Convex Combinations of Metamodels
,”
Eng. Optim.
,
53
(
4
), pp.
702
718
.
25.
Acar
,
E.
,
2010
, “
Various Approaches for Constructing an Ensemble of Metamodels Using Local Measures
,”
Struct. Multidiscip. Optim.
,
42
(
6
), pp.
879
896
.
26.
Zhang
,
J.
,
Chowdhury
,
S.
, and
Messac
,
A.
,
2012
, “
An Adaptive Hybrid Surrogate Model
,”
Struct. Multidiscip. Optim.
,
46
(
2
), pp.
223
238
.
27.
Lee
,
Y.
, and
Choi
,
D. H.
,
2014
, “
Pointwise Ensemble of Meta-models Using v Nearest Points Cross-validation
,”
Struct. Multidiscip. Optim.
,
50
(
3
), pp.
383
394
.
28.
Liu
,
H.
,
Xu
,
S.
,
Wang
,
X.
,
Meng
,
J.
, and
Yang
,
S.
,
2016
, “
Optimal Weighted Pointwise Ensemble of Radial Basis Functions With Different Basis Functions
,”
AIAA J.
,
54
(
10
), pp.
3117
3133
.
29.
Qiu
,
H.
,
Chen
,
L.
,
Jiang
,
C.
,
Cai
,
X.
, and
Gao
,
L.
,
2017
, “
Ensemble of Surrogate Models Using Sign Based Cross Validation Error
,”
Proceedings of the.2017 IEEE 21st International Conference on Computer Supported Cooperative Work in Design CSCWD 2017
,
Wellington, New Zealand
,
Apr. 26–28
, pp.
526
531
.
30.
Song
,
X.
,
Lv
,
L.
,
Li
,
J.
,
Sun
,
W.
, and
Zhang
,
J.
,
2018
, “
An Advanced and Robust Ensemble Surrogate Model: Extended Adaptive Hybrid Functions
,”
ASME J. Mech. Des.
,
140
(
4
), p.
041402
.
31.
Ye
,
Y.
,
Wang
,
Z.
, and
Zhang
,
X.
,
2020
, “
An Optimal Pointwise Weighted Ensemble of Surrogates Based on Minimization of Local Mean Square Error
,”
Struct. Multidiscip. Optim.
,
62
(
2
), pp.
529
542
.
32.
Pang
,
Y.
,
Wang
,
Y.
,
Sun
,
W.
, and
Song
,
X.
,
2022
, “
OTL-PEM: An Optimization-Based Two-Layer Pointwise Ensemble of Surrogate Models
,”
ASME J. Mech. Des.
,
144
(
5
), p.
051702
.
33.
Zhang
,
S.
,
Pang
,
Y.
,
Liang
,
P.
, and
Song
,
X.
,
2022
, “
On the Ensemble of Surrogate Models by Minimum Screening Index
,”
ASME J. Mech. Des.
,
144
(
7
), p.
071707
.
34.
Kalay
,
Y. E.
,
1982
, “
Determining the Spatial Containment of a Point in General Polyhedra
,”
Comput. Graph. Image Process.
,
19
(
4
), pp.
303
334
.
35.
Feito
,
F. R.
, and
Torres
,
J. C.
,
1997
, “
Inclusion Test for General Polyhedra
,”
Comput. Graph.
,
21
(
1
), pp.
23
30
.
36.
Ogayar
,
C. J.
,
Segura
,
R. J.
, and
Feito
,
F. R.
,
2005
, “
Point in Solid Strategies
,”
Comput. Graph.
,
29
(
4
), pp.
616
624
.
37.
Wang
,
W.
,
Li
,
J.
,
Sun
,
H.
, and
Wu
,
E.
,
2008
, “
Layer-Based Representation of Polyhedrons for Point Containment Tests
,”
IEEE Trans. Vis. Comput. Graph.
,
14
(
1
), pp.
73
83
.
38.
Li
,
J.
, and
Wang
,
W.
,
2017
, “
Fast and Robust GPU-Based Point-in-Polyhedron Determination
,”
CAD Comput. Aided Des.
,
87
, pp.
20
28
.
39.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2006
,
Gaussian Processes for Machine Learning
,
MIT Press
,
Cambridge, MA
.
40.
Forrester
,
A. I. J.
,
Sóbester
,
A.
, and
Keane
,
A. J.
,
2008
,
Engineering Design via Surrogate Modelling A Practical Guide
,
John Wiley & Sons Ltd.
,
Chichester, West Sussex, UK
.
41.
Palar
,
P. S.
, and
Shimoyama
,
K.
,
2018
, “
Ensemble of Kriging With Multiple Kernel Functions for Engineering Design Optimization
,”
BIOMA 2018: International Conference on Bioinspired Methods and Their Applications
,
Paris, France
,
May 16–18
, pp.
211
222
.
42.
Cha
,
S.-H.
,
2007
, “
Comprehensive Survey on Distance/Similarity Measures Between Probability Density Functions
,”
Int. J. Math. Model. Methods Appl. Sci.
,
1
(
4
), pp.
300
307
.
43.
Jamil
,
M.
, and
Yang
,
X. S.
,
2013
, “
A Literature Survey of Benchmark Functions for Global Optimisation Problems
,”
Int. J. Math. Model. Numer. Optim.
,
4
(
2
), pp.
150
194
.
You do not currently have access to this content.