Abstract

A key part of an engineer’s purpose is to create products and services that benefit society, or, in other words, to create products with a positive social impact. While engineers have many predictive models to aid in making design decisions about the functional performance or safety of a product, very few models exist for estimating or planning for the wide range of social impacts an engineered product can have. To model social impact, a model must contain representations of both the product and society. Agent-based modeling is a tool that can model society and incorporate social impact factors. In this paper, we investigate factors that have historically limited the usefulness of product adoption agent-based models and predictive social impact models through a systematic literature review. Common themes of limiting factors are identified, steps are presented to improve the usefulness of agent-based product adoption models and predictive social impact models, and a general process for the creation of agent-based social impact models is presented. Improving the usefulness of these predictive models can aid engineers in making better design decisions. Predictive social impact models can help identify areas in the design space to improve the social impact of products. When coupled with existing design methods, agent-based predictive social impact models can help increase the probability that a product achieves positive social impact.

References

1.
Norman
,
W.
, and
MacDonald
,
C.
,
2004
, “
Getting to the Bottom of ‘Triple Bottom Line’
,”
Business Ethics Q.: J. Soc. Business Ethics
,
14
(
2
), pp.
243
262
.
2.
Burdge
,
R. J.
,
2015
,
A Community Guide to Social Impact Assessment
, 4th ed.,
Social Ecology Press
,
Huntsville, MD
.
3.
Aslaksen
,
E. W.
,
2013
, “Characteristics of Engineering,”
The System Concept and Its Application to Engineering
,
E.
Aslaksen
, ed.,
Springer
,
Berlin/Heidelberg
, pp.
79
106
.
4.
American Society of Mechanical Engineers, Mission, Vision, and Strategic Priorities
,” https://www.asme.org/about-asme/asme-strategy, Accessed January 24, 2022.
5.
Schöggl
,
J.-P.
,
Baumgartner
,
R. J.
, and
Hofer
,
D.
,
2017
, “
Improving Sustainability Performance in Early Phases of Product Design: A Checklist for Sustainable Product Development Tested in the Automotive Industry
,”
J. Clean. Prod.
,
140
(
Part 3
), pp.
1602
1617
.
6.
Pack
,
A. T.
,
Phipps
,
E. R.
,
Mattson
,
C. A.
, and
Dahlin
,
E. C.
,
2020
, “
Social Impact in Product Design, an Exploration of Current Industry Practices
,”
ASME J. Mech. Des.
,
142
(
7
), p.
071702
.
7.
Mattson
,
C. A.
, and
Winter
,
A. G.
,
2016
, “
Why the Developing World Needs Mechanical Design
,”
ASME J. Mech. Des.
,
138
(
7
), p.
070301
.
8.
Burleson
,
G.
, and
Austin-Breneman
,
J.
,
2020
, “Engineering for Global Development: Characterizing the Discipline Through a Systematic Literature Review,”
ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Virtual, Aug. 17–19.
9.
Armstrong
,
A. G.
,
Suk
,
H.
,
Mabey
,
C. S.
,
Mattson
,
C. A.
,
Hall
,
J.
, and
Salmon
,
J. L.
,
2023
, “
Systematic Review and Classification of the Engineering for Global Development Literature Based on Design Tools and Methods for Social Impact Consideration
,”
ASME J. Mech. Des
,
145
(
3
), p.
030801
.
10.
Fontes
,
J.
,
Tarne
,
P.
,
Traverso
,
M.
, and
Bernstein
,
P.
,
2018
, “
Product Social Impact Assessment
,”
Int. J. Life Cycle Assess.
,
23
(
3
), pp.
547
555
.
11.
Benoît-Norris
,
C.
,
Vickery-Niederman
,
G.
,
Valdivia
,
S.
,
Franze
,
J.
,
Traverso
,
M.
,
Ciroth
,
A.
, and
Mazijn
,
B.
,
2011
, “
Introducing the UNEP/SETAC Methodological Sheets for Subcategories of Social LCA
,”
Int. J. Life Cycle Assess.
,
16
(
7
), pp.
682
690
.
12.
Stevenson
,
P. D.
,
Mattson
,
C. A.
,
Bryden
,
K. M.
, and
Maccarty
,
N. A.
,
2018
, “
Toward a Universal Social Impact Metric for Engineered Products That Alleviate Poverty
,”
ASME J. Mech. Des.
,
140
(
4
), p.
041404
.
13.
Stevenson
,
P. D.
,
Mattson
,
C. A.
, and
Dahlin
,
E. C.
,
2020
, “
A Method for Creating Product Social Impact Models of Engineered Products
,”
ASME J. Mech. Des.
,
142
(
4
), p.
041101
.
14.
Mabey
,
C. S.
,
Armstrong
,
A. G.
,
Mattson
,
C. A.
,
Salmon
,
J. L.
,
Hatch
,
N. W.
, and
Dahlin
,
E. C.
,
2021
, “
A Computational Simulation-Based Framework for Estimating Potential Product Impact During Product Design
,”
Design Sci.
,
7
, p.
e15
.
15.
Ropohl
,
G.
,
1999
, “
Philosophy of Socio-Technical Systems
,”
Soc. Philos. Technol. Q. Elect. J.
,
4
(
3
), pp.
186
194
.
16.
Dorrestijn
,
S.
,
van der Voort
,
M.
, and
Verbeek
,
P.-P.
,
2014
, “
Future User-Product Arrangements: Combining Product Impact and Scenarios in Design for Multi Age Success
,”
Technol. Forecast. Soc. Change
,
89
, pp.
284
292
.
17.
Bonabeau
,
E.
,
2002
, “
Agent-Based Modeling: Methods and Techniques for Simulating Human Systems
,”
Proc. Natl. Acad. Sci. USA
,
99
(
Suppl3
), pp.
7280
7287
.
18.
Grimm
,
V.
,
Revilla
,
E.
,
Berger
,
U.
,
Jeltsch
,
F.
,
Mooij
,
W. M.
,
Railsback
,
S. F.
,
Thulke
,
H.-H.
,
Weiner
,
J.
,
Wiegand
,
T.
, and
DeAngelis
,
D. L.
,
2005
, “
Pattern-Oriented Modeling of Agent-Based Complex Systems: Lessons From Ecology
,”
Science
,
310
(
5750
), pp.
987
991
.
19.
Schelling
,
T. C.
,
1971
, “
Dynamic Models of Segregation
,”
J. Math. Sociol.
,
1
(
2
), pp.
143
186
.
20.
Tracy
,
M.
,
Cerdá
,
M.
, and
Keyes
,
K. M.
,
2018
, “
Agent-Based Modeling in Public Health: Current Applications and Future Directions
,”
Ann. Rev. Public Health
,
39
, pp.
77
94
.
21.
Bihary
,
D.
,
Kerenyi
,
A.
,
Gelencser
,
Z.
,
Netotea
,
S.
,
Kertesz-Farkas
,
A.
,
Venturi
,
V.
, and
Pongor
,
S.
,
2012
, “
Simulation of Communication and Cooperation in Multispecies Bacterial Communities With an Agent Based Model
,”
Scalab. Comput.: Pract. Exp.
,
13
(
1
), pp.
21
28
.
22.
Christensen
,
C.
, and
Salmon
,
J.
,
2022
, “
An Agent-Based Modeling Approach for Simulating the Impact of Small Unmanned Aircraft Systems on Future Battlefields
,”
J. Defen. Model. Simul.
,
19
(
3
), pp.
481
500
.
23.
Willey
,
L. C.
, and
Salmon
,
J. L.
,
2021
, “
Infrastructure Optimization of In-Motion Charging Networks for Electric Vehicles Using Agent-Based Modeling
,”
IEEE Trans. Intell. Veh.
,
6
(
4
), pp.
760
771
.
24.
Lapp
,
S.
,
Jablokow
,
K.
, and
McComb
,
C.
,
2019
, “
KABOOM: An Agent-Based Model for Simulating Cognitive Style in Team Problem Solving
,”
Des. Sci.
,
5
, p.
e13
.
25.
Bazzan
,
A. L. C.
, and
Klügl
,
F.
,
2014
, “
A Review on Agent-Based Technology for Traffic and Transportation
,”
Knowl. Eng. Rev.
,
29
(
3
), pp.
375
403
.
26.
Squazzoni
,
F.
,
2010
, “The Impact of Agent-Based Models in the Social Sciences After 15 Years of Incursions,”
History of Economic Ideas
, Vol. 18, F. Serra, ed.,
Accademia Editoriale
, pp.
197
233
.
27.
Kiesling
,
E.
,
Günther
,
M.
,
Stummer
,
C.
, and
Wakolbinger
,
L. M.
,
2012
, “
Agent-Based Simulation of Innovation Diffusion: A Review
,”
Centr. Eur. J. Oper. Res.
,
20
(
2
), pp.
183
230
.
28.
Rahmandad
,
H.
, and
Sterman
,
J.
,
2008
, “
Heterogeneity and Network Structure in the Dynamics of Diffusion: Comparing Agent-Based and Differential Equation Models
,”
Manag. Sci.
,
54
(
5
), pp.
998
1014
.
29.
Vicsek
,
T.
,
2002
, “
Complexity: The Bigger Picture
,”
Nature
,
418
(
6894
), p.
131
.
30.
Garcia
,
R.
, and
Jager
,
W.
,
2011
, “
From the Special Issue Editors: Agent-Based Modeling of Innovation Diffusion
,”
J. Prod. Innov. Manag.
,
28
(
2
), pp.
148
151
.
31.
Valdivia
,
S.
,
Backes
,
J. G.
,
Traverso
,
M.
,
Sonnemann
,
G.
,
Cucurachi
,
S.
,
Guinée
,
J. B.
,
Schaubroeck
,
T.
, et al.,
2021
, “
Principles for the Application of Life Cycle Sustainability Assessment
,”
Int. J. Life Cycle Assess.
,
26
(
9
), pp.
1900
1905
.
32.
Epstein
,
J. M.
,
2008
, “
Why Model
?”
J. Artif. Soc. Social Simul.
,
11
(
4
), p.
12
.
33.
Xiao
,
Y.
, and
Watson
,
M.
,
2019
, “
Guidance on Conducting a Systematic Literature Review
,”
J. Plann. Educ. Res.
,
39
(
1
), pp.
93
112
.
34.
“Elsevier, Welcome,” https://www.engineeringvillage.com/home.url, Accessed October 15, 2021.
35.
Adepetu
,
A.
, and
Keshav
,
S.
,
2017
, “
The Relative Importance of Price and Driving Range on Electric Vehicle Adoption: Los Angeles Case Study
,”
Transportation
,
44
(
2
), pp.
353
373
.
36.
Alyousef
,
A.
,
Adepetu
,
A.
, and
de Meer
,
H.
,
2017
, “
Analysis and Model-Based Predictions of Solar PV and Battery Adoption in Germany: An Agent-Based Approach
,”
Comput. Sci. – Res. Develop.
,
32
(
1
), pp.
211
223
.
37.
Amini
,
M.
,
Wakolbinger
,
T.
,
Racer
,
M.
, and
Nejad
,
M. G.
,
2012
, “
Alternative Supply Chain Production-Sales Policies for New Product Diffusion: An Agent-Based Modeling and Simulation Approach
,”
Eur. J. Oper. Res.
,
216
(
2
), pp.
301
311
.
38.
Bodo
,
P.
,
2016
, “
MADness in the Method: On the Volatility and Irregularity of Technology Diffusion
,”
Technol. Forecast. Soc. Change
,
111
, pp.
2
11
.
39.
Bohlmann
,
J. D.
,
Calantone
,
R. J.
, and
Zhao
,
M.
,
2010
, “
The Effects of Market Network Heterogeneity on Innovation Diffusion: An Agent-Based Modeling Approach
,”
J. Prod. Innov. Manag.
,
27
(
5
), pp.
741
760
.
40.
Brown
,
C.
,
Bakam
,
I.
,
Smith
,
P.
, and
Matthews
,
R.
,
2016
, “
An Agent-Based Modelling Approach to Evaluate Factors Influencing Bioenergy Crop Adoption in North-East Scotland
,”
Glob. Change Biol. Bioenergy
,
8
(
1
), pp.
226
244
.
41.
Brugger
,
H. I.
, and
Henry
,
A. D.
,
2019
, “
Equity of Incentives: Agent-Based Explorations of How Social Networks Influence the Efficacy of Programs to Promote Solar Adoption
,”
Complexity
,
2019
, p.
4349823
.
42.
Burg
,
V.
,
Troitzsch
,
K. G.
,
Akyol
,
D.
,
Baier
,
U.
,
Hellweg
,
S.
, and
Thees
,
O.
,
2021
, “
Farmer’s Willingness to Adopt Private and Collective Biogas Facilities: An Agent-Based Modeling Approach
,”
Resour. Conserv. Recycl.
,
167
, p.
105400
.
43.
Burli
,
P. H.
,
Nguyen
,
R. T.
,
Hartley
,
D. S.
,
Griffel
,
L. M.
,
Vazhnik
,
V.
, and
Lin
,
Y.
,
2021
, “
Farmer Characteristics and Decision-Making: A Model for Bioenergy Crop Adoption
,”
Energy
,
234
, p.
121235
.
44.
Byrka
,
K.
,
Jedrzejewski
,
A.
,
Sznajd-Weron
,
K.
, and
Weron
,
R.
,
2016
, “
Difficulty is Critical: The Importance of Social Factors in Modeling Diffusion of Green Products and Practices
,”
Renewable Sustain. Energy Rev.
,
62
, pp.
723
735
.
45.
Cao
,
J.
,
Choi
,
C. H.
, and
Zhao
,
F.
,
2017
, “
Agent-Based Modeling of the Adoption of High-Efficiency Lighting in the Residential Sector
,”
Sustain. Energy Technol. Assess.
,
19
, pp.
70
78
.
46.
Chi
,
C.
,
Ma
,
T.
, and
Ning
,
F.
,
2012
, “
Technology/Infrastructure Diffusion of Natural Gas Vehicles: The Case of Shanghai
,”
Int. J. Energy Sector Manag.
,
6
(
1
), pp.
33
49
.
47.
Delre
,
S. A.
,
Jager
,
W.
, and
Janssen
,
M. A.
,
2007
, “
Diffusion Dynamics in Small-World Networks With Heterogeneous Consumers
,”
Comput. Math. Organ. Theory
,
13
(
2
), pp.
185
202
.
48.
Delre
,
S. A.
,
Jager
,
W.
,
Bijmolt
,
T. H. A.
, and
Janssen
,
M. A.
,
2010
, “
Will It Spread Or Not? The Effects of Social Influences and Network Topology on Innovation Diffusion
,”
J. Prod. Innov. Manag.
,
27
(
2
), pp.
267
282
.
49.
Eppstein
,
M. J.
,
Grover
,
D. K.
,
Marshall
,
J. S.
, and
Rizzo
,
D. M.
,
2011
, “
An Agent-Based Model to Study Market Penetration of Plug-In Hybrid Electric Vehicles
,”
Energy Pol.
,
39
(
6
), pp.
3789
3802
.
50.
Eppstein
,
M. J.
,
Rizzo
,
D. M.
,
Lee
,
B. H. Y.
,
Krupa
,
J. S.
, and
Manukyan
,
N.
,
2015
, “
Using National Survey Respondents as Consumers in an Agent-Based Model of Plug-In Hybrid Vehicle Adoption
,”
IEEE Access
,
3
, pp.
457
468
.
51.
Faber
,
A.
,
Valente
,
M.
, and
Janssen
,
P.
,
2010
, “
Exploring Domestic Micro-Cogeneration in the Netherlands: An Agent-Based Demand Model for Technology Diffusion
,”
Energy Pol.
,
38
(
6
), pp.
2763
2775
.
52.
Fibich
,
G.
, and
Gibori
,
R.
,
2010
, “
Aggregate Diffusion Dynamics in Agent-Based Models With a Spatial Structure
,”
Oper. Res.
,
58
(
5
), pp.
1450
1468
.
53.
Fibich
,
G.
,
2017
, “
Diffusion of New Products With Recovering Consumers
,”
SIAM J. Appl. Math.
,
77
(
4
), pp.
1230
1247
.
54.
Guo
,
Y.
,
Zhang
,
H.
,
Dong
,
J.
,
Shen
,
D.
, and
Yin
,
J.
,
2014
, “
Agent-Based Simulation and Data Mining Analysis for Effect of Purchase Price in Households’ Solar Energy Adoption Process
,”
ICSEE LSMS
,
Nanjing, China
,
Sept. 22–24
, pp.
117
124
.
55.
Hattam
,
L.
, and
Greetham
,
D. V.
,
2017
, “
Green Neighbourhoods in Low Voltage Networks: Measuring Impact of Electric Vehicles and Photovoltaics on Load Profiles
,”
J. Modern Power Syst. Clean Energy
,
5
(
1
), pp.
105
116
.
56.
Hesselink
,
L. X. W.
, and
Chappin
,
E. J. L.
,
2019
, “
Adoption of Energy Efficient Technologies by Households – Barriers, Policies and Agent-Based Modelling Studies
,”
Renewable Sustain. Energy Rev.
,
99
, pp.
29
41
.
57.
Hicks
,
A. L.
,
Theis
,
T. L.
, and
Zellner
,
M. L.
,
2015
, “
Emergent Effects of Residential Lighting Choices: Prospects for Energy Savings
,”
J. Ind. Ecol.
,
19
(
2
), pp.
285
295
.
58.
Hidayatno
,
A.
,
Jafino
,
B. A.
,
Setiawan
,
A. D.
, and
Purwanto
,
W. W.
,
2020
, “
When and Why Does Transition Fail? A Model-Based Identification of Adoption Barriers and Policy Vulnerabilities for Transition to Natural Gas Vehicles
,”
Energy Pol.
,
138
, p.
111239
.
59.
Huang
,
S.
,
Hu
,
G.
,
Chennault
,
C.
,
Su
,
L.
,
Brandes
,
E.
,
Heaton
,
E.
,
Schulte
,
L.
,
Wang
,
L.
, and
Tyndall
,
J.
,
2016
, “
Agent-Based Modeling of Bioenergy Crop Adoption and Farmer Decision-Making
,”
Energy
,
115
, pp.
1188
1201
.
60.
Huang
,
X.
,
Lin
,
Y.
,
Zhou
,
F.
,
Lim
,
M. K.
, and
Chen
,
S.
,
2021
, “
Agent-Based Modelling for Market Acceptance of Electric Vehicles: Evidence From China
,”
Sustain. Prod. Consum.
,
28
, pp.
206
217
.
61.
Hötte
,
K.
,
2020
, “
How to Accelerate Green Technology Diffusion? Directed Technological Change in the Presence of Coevolving Absorptive Capacity
,”
Energy Econ.
,
85
, p.
104565
.
62.
Jagadish
,
A.
,
Dwivedi
,
P.
,
McEntire
,
K. D.
, and
Chandar
,
M.
,
2019
, “
Agent-Based Modeling of ‘Cleaner’ Cookstove Adoption and Woodfuel Use: An Integrative Empirical Approach
,”
Forest Pol. Econ.
,
106
, p.
101972
.
63.
Jensen
,
T.
,
Holtz
,
G.
, and
Chappin
,
É. J. L.
,
2015
, “
Agent-Based Assessment Framework for Behavior-Changing Feedback Devices: Spreading of Devices and Heating Behavior
,”
Technol. Forecast. Soc. Change
,
98
, pp.
105
119
.
64.
Jensen
,
T.
, and
Chappin
,
É. J. L.
,
2017
, “
Automating Agent-Based Modeling: Data-Driven Generation and Application of Innovation Diffusion Models
,”
Environ. Modell. Softw.
,
92
, pp.
261
268
.
65.
Kim
,
S.
,
Lee
,
K.
,
Cho
,
J. K.
, and
Kim
,
C. O.
,
2011
, “
Agent-Based Diffusion Model for an Automobile Market With Fuzzy TOPSIS-Based Product Adoption Process
,”
Exp. Syst. Appl.
,
38
(
6
), pp.
7270
7276
.
66.
Kiravu
,
C.
,
Oladiran Moses
,
T.
, and
Yanev
,
K.
,
2014
, “
Modeling of Technology Adoption in Botswana
,”
Int. J. Energy Sector Manage.
,
8
(
2
), pp.
198
229
.
67.
Laciana
,
C. E.
, and
Rovere
,
S. L.
,
2011
, “
ISING-Like Agent-Based Technology Diffusion Model: Adoption Patterns Vs Seeding Strategies
,”
Phys. A: Statist. Mech. Its Appl.
,
390
(
6
), pp.
1139
1149
.
68.
Laciana
,
C. E.
,
Gual
,
G.
,
Kalmus
,
D.
,
Oteiza-Aguirre
,
N.
, and
Rovere
,
S. L.
,
2014
, “
Diffusion of Two Brands in Competition: Cross-Brand Effect
,”
Phys. A: Statist. Mech. Its Appl.
,
413
, pp.
104
115
.
69.
Laciana
,
C. E.
,
Rovere
,
S. L.
, and
Podestá
,
G. P.
,
2013
, “
Exploring Associations Between Micro-Level Models of Innovation Diffusion and Emerging Macro-Level Adoption Patterns
,”
Phys. A: Statist. Mech. Its Appl.
,
392
(
8
), pp.
1873
1884
.
70.
Laguna
,
M. F.
,
Iglesias
,
J. R.
, and
Gonçalves
,
S.
,
2019
, “
Irrational Behavior in the Adoption of Innovations
,”
Phys. A: Statist. Mech. Its Appl.
,
535
, p.
122388
.
71.
Lee
,
M.
, and
Hong
,
T.
,
2019
, “
Hybrid Agent-Based Modeling of Rooftop Solar Photovoltaic Adoption by Integrating the Geographic Information System and Data Mining Technique
,”
Energy Conver. Manage.
,
183
, pp.
266
279
.
72.
Lee
,
T.
, and
Yao
,
R.
,
2013
, “
Incorporating Technology Buying Behaviour Into UK-Based Long Term Domestic Stock Energy Models to Provide Improved Policy Analysis
,”
Energy Pol.
,
52
, pp.
363
372
.
73.
Li
,
Y.
,
Khalkhali
,
M.
,
Mo
,
W.
, and
Lu
,
Z.
,
2021
, “
Modeling Spatial Diffusion of Decentralized Water Technologies and Impacts on the Urban Water Systems
,”
J. Clean. Prod.
,
315
, p.
128169
.
74.
Manson
,
S. M.
,
Jordan
,
N. R.
,
Nelson
,
K. C.
, and
Brummel
,
R. F.
,
2016
, “
Modeling the Effect of Social Networks on Adoption of Multifunctional Agriculture
,”
Environ. Modell. Softw.
,
75
, pp.
388
401
.
75.
Maya Sopha
,
B.
,
Klöckner
,
C. A.
, and
Hertwich
,
E. G.
,
2011
, “
Exploring Policy Options for a Transition to Sustainable Heating System Diffusion Using an Agent-Based Simulation
,”
Energy Pol.
,
39
(
5
), pp.
2722
2729
.
76.
Mittal
,
A.
,
Krejci
,
C. C.
, and
Dorneich
,
M. C.
,
2019
, “
An Agent-Based Approach to Designing Residential Renewable Energy Systems
,”
Renewable Sustain. Energy. Rev.
,
112
, pp.
1008
1020
.
77.
Moglia
,
M.
,
Cook
,
S.
, and
McGregor
,
J.
,
2017
, “
A Review of Agent-Based Modelling of Technology Diffusion With Special Reference to Residential Energy Efficiency
,”
Sustain. Cities Soc.
,
31
, pp.
173
182
.
78.
Mohandes
,
N.
,
Sanfilippo
,
A.
, and
Al Fakhri
,
M.
,
2019
, “
Modeling Residential Adoption of Solar Energy in the Arabian Gulf Region
,”
Renewable Energy
,
131
, pp.
381
389
.
79.
Nan
,
N.
,
Zmud
,
R.
, and
Yetgin
,
E.
,
2014
, “
A Complex Adaptive Systems Perspective of Innovation Diffusion: An Integrated Theory and Validated Virtual Laboratory
,”
Comput. Math. Organ. Theory
,
20
(
1
), pp.
52
88
.
80.
Nava-Guerrero
,
G.-D.-C.
,
Hansen
,
H. H.
,
Korevaar
,
G.
, and
Lukszo
,
Z.
,
2021
, “
The Effect of Group Decisions in Heat Transitions: An Agent-Based Approach
,”
Energy Pol.
,
156
, p.
112306
.
81.
Ning
,
W.
,
Guo
,
J.
,
Liu
,
X.
, and
Pan
,
H.
,
2020
, “
Incorporating Individual Preference and Network Influence on Choice Behavior of Electric Vehicle Sharing Using Agent-Based Model
,”
Int. J. Sustain. Transp.
,
14
(
12
), pp.
917
931
.
82.
Noori
,
M.
, and
Tatari
,
O.
,
2016
, “
Development of an Agent-Based Model for Regional Market Penetration Projections of Electric Vehicles in the United States
,”
Energy
,
96
, pp.
215
230
.
83.
Novizayanti
,
D.
,
Prasetio
,
E. A.
,
Siallagan
,
M.
, and
Santosa
,
S. P.
,
2021
, “
Agent-Based Modeling Framework for Electric Vehicle Adoption Transition in Indonesia
,”
World Elect. Veh. J.
,
12
(
2
), p.
73
.
84.
Pakravan
,
M.
, and
MacCarty
,
N.
,
2020
, “
An Agent-Based Model for Adoption of Clean Technology Using the Theory of Planned Behavior
,”
ASME J. Mech. Des.
,
143
(
2
), p.
021402
.
85.
Palmer
,
J.
,
Sorda
,
G.
, and
Madlener
,
R.
,
2015
, “
Modeling the Diffusion of Residential Photovoltaic Systems in Italy: An Agent-Based Simulation
,”
Technol. Forecast. Soc. Change
,
99
, pp.
106
131
.
86.
Panos
,
E.
, and
Margelou
,
S.
,
2019
, “
Long-Term Solar Photovoltaics Penetration in Single- and Two-Family Houses in Switzerland
,”
Energies
,
12
(
13
), p.
2460
.
87.
Pearce
,
P.
, and
Slade
,
R.
,
2018
, “
Feed-in Tariffs for Solar Microgeneration: Policy Evaluation and Capacity Projections Using a Realistic Agent-Based Model
,”
Energy Pol.
,
116
, pp.
95
111
.
88.
Peralta
,
A. A.
,
Balta-Ozkan
,
N.
, and
Longhurst
,
P.
,
2022
, “
Spatio-Temporal Modelling of Solar Photovoltaic Adoption: An Integrated Neural Networks and Agent-Based Modelling Approach
,”
Appl. Energy
,
305
, p.
117949
.
89.
Peres
,
R.
,
2014
, “
The Impact of Network Characteristics on the Diffusion of Innovations
,”
Phys. A: Statist. Mech. Its Appl.
,
402
, pp.
330
343
.
90.
Polhill
,
J. G.
,
Ge
,
J.
,
Hare
,
M. P.
,
Matthews
,
K. B.
,
Gimona
,
A.
,
Salt
,
D.
, and
Yeluripati
,
J.
,
2019
, “
Crossing the Chasm: a ‘Tube-Map’ for Agent-Based Social Simulation of Policy Scenarios in Spatially-Distributed Systems
,”
GeoInformatica
,
23
(
2
), pp.
169
199
.
91.
Rai
,
V.
, and
Robinson
,
S. A.
,
2015
, “
Agent-Based Modeling of Energy Technology Adoption: Empirical Integration of Social, Behavioral, Economic, and Environmental Factors
,”
Environ. Modell. Softw.
,
70
, pp.
163
177
.
92.
Ramsey
,
E.
, and
Berglund
,
E. Z.
,
2021
, “
Developing an Agent-Based Model of Dual-Flush Toilet Adoption
,”
J. Water Resour. Plann. Manage.
,
147
(
10
), p.
04021067
.
93.
Ramshani
,
M.
,
Li
,
X.
,
Khojandi
,
A.
, and
Omitaomu
,
O.
,
2020
, “
An Agent-Based Approach to Study the Diffusion Rate and the Effect of Policies on Joint Placement of Photovoltaic Panels and Green Roof Under Climate Change Uncertainty
,”
Appl. Energy
,
261
, p.
114402
.
94.
Rasoulkhani
,
K.
,
Logasa
,
B.
,
Presa Reyes
,
M.
, and
Mostafavi
,
A.
,
2018
, “
Understanding Fundamental Phenomena Affecting the Water Conservation Technology Adoption of Residential Consumers Using Agent-Based Modeling
,”
Water
,
10
(
8
), p.
993
.
95.
Rebaudo
,
F.
, and
Dangles
,
O.
,
2013
, “
An Agent-Based Modeling Framework for Integrated Pest Management Dissemination Programs
,”
Environ. Modell. Softw.
,
45
, pp.
141
149
.
96.
Robinson
,
S. A.
, and
Rai
,
V.
,
2015
, “
Determinants of Spatio-Temporal Patterns of Energy Technology Adoption: An Agent-Based Modeling Approach
,”
Appl. Energy
,
151
, pp.
273
284
.
97.
Sachs
,
J.
,
Meng
,
Y.
,
Giarola
,
S.
, and
Hawkes
,
A.
,
2019
, “
An Agent-Based Model for Energy Investment Decisions in the Residential Sector
,”
Energy
,
172
, pp.
752
768
.
98.
Schiera
,
D. S.
,
Minuto
,
F. D.
,
Bottaccioli
,
L.
,
Borchiellini
,
R.
, and
Lanzini
,
A.
,
2019
, “
Analysis of Rooftop Photovoltaics Diffusion in Energy Community Buildings by a Novel GIS- and Agent-Based Modeling Co-simulation Platform
,”
IEEE Access: Pract. Innov., Open Solut.
,
7
, pp.
93404
93432
.
99.
Schramm
,
M. E.
,
Trainor
,
K. J.
,
Shanker
,
M.
, and
Hu
,
M. Y.
,
2010
, “
An Agent-Based Diffusion Model With Consumer and Brand Agents
,”
Decis. Supp. Syst.
,
50
(
1
), pp.
234
242
.
100.
Schwarz
,
M.
,
Ossenbrink
,
J.
,
Knoeri
,
C.
, and
Hoffmann
,
V. H.
,
2019
, “
Addressing Integration Challenges of High Shares of Residential Solar Photovoltaics With Battery Storage and Smart Policy Designs
,”
Environ. Res. Lett.
,
14
(
7
), p.
074002
.
101.
Schwarz
,
N.
, and
Ernst
,
A.
,
2009
, “
Agent-Based Modeling of the Diffusion of Environmental Innovations — An Empirical Approach
,”
Technol. Forecast. Soc. Change
,
76
(
4
), pp.
497
511
.
102.
Schwoon
,
M.
,
2008
, “
Learning by Doing, Learning Spillovers and the Diffusion of Fuel Cell Vehicles
,”
Simul. Modell. Practice Theory
,
16
(
9
), pp.
1463
1476
.
103.
Sen
,
B.
,
Noori
,
M.
, and
Tatari
,
O.
,
2017
, “
Will Corporate Average Fuel Economy (CAFE) Standard Help? Modeling CAFE’s Impact on Market Share of Electric Vehicles
,”
Energy Pol.
,
109
, pp.
279
287
.
104.
Shi
,
Y.
,
Zeng
,
Y.
,
Engo
,
J.
,
Han
,
B.
,
Li
,
Y.
, and
Muehleisen
,
R. T.
,
2020
, “
Leveraging Inter-Firm Influence in the Diffusion of Energy Efficiency Technologies: An Agent-Based Model
,”
Appl. Energy
,
263
, p.
114641
.
105.
Shi
,
Y.
,
Han
,
B.
, and
Zeng
,
Y.
,
2020
, “
Simulating Policy Interventions in the Interfirm Diffusion of Low-Carbon Technologies: An Agent-Based Evolutionary Game Model
,”
J. Clean. Prod.
,
250
, p.
119449
.
106.
Silvia
,
C.
, and
Krause
,
R. M.
,
2016
, “
Assessing the Impact of Policy Interventions on the Adoption of Plug-In Electric Vehicles: An Agent-Based Model
,”
Energy Pol.
,
96
, pp.
105
118
.
107.
Snape
,
J. R.
,
Boait
,
P. J.
, and
Rylatt
,
R. M.
,
2015
, “
Will Domestic Consumers Take Up the Renewable Heat Incentive? An Analysis of the Barriers to Heat Pump Adoption Using Agent-Based Modelling
,”
Energy Pol.
,
85
, pp.
32
38
.
108.
Stavrakas
,
V.
,
Papadelis
,
S.
, and
Flamos
,
A.
,
2019
, “
An Agent-Based Model to Simulate Technology Adoption Quantifying Behavioural Uncertainty of Consumers
,”
Appl. Energy
,
255
, p.
113795
.
109.
Stummer
,
C.
,
Kiesling
,
E.
,
Günther
,
M.
, and
Vetschera
,
R.
,
2015
, “
Innovation Diffusion of Repeat Purchase Products in a Competitive Market: An Agent-Based Simulation Approach
,”
Eur. J. Oper. Res.
,
245
(
1
), pp.
157
167
.
110.
Sun
,
L.
, and
Lubkeman
,
D.
,
2021
, “
Agent-Based Modeling of Feeder-Level Electric Vehicle Diffusion for Distribution Planning
,”
IEEE Trans. Smart Grid
,
12
(
1
), pp.
751
760
.
111.
Swinerd
,
C.
, and
McNaught
,
K. R.
,
2015
, “
Comparing a Simulation Model With Various Analytic Models of the International Diffusion of Consumer Technology
,”
Technol. Forecast. Social Change
,
100
, pp.
330
343
.
112.
Talebian
,
A.
, and
Mishra
,
S.
,
2018
, “
Predicting the Adoption of Connected Autonomous Vehicles: A New Approach Based on the Theory of Diffusion of Innovations
,”
Transp. Res. Part C: Emerg. Technol.
,
95
, pp.
363
380
.
113.
Tourigny
,
A.
, and
Filion
,
Y.
,
2019
, “
Sensitivity Analysis of an Agent-Based Model Used to Simulate the Spread of Low-flow Fixtures for Residential Water Conservation and Evaluate Energy Savings in a Canadian Water Distribution System
,”
J. Water Resour. Planning Manage.
,
145
(
1
), p.
04018086
.
114.
van Vliet
,
O.
,
Vries
,
B. D.
,
Faaij
,
A.
,
Turkenburg
,
W.
, and
Jager
,
W.
,
2010
, “
Multi-agent Simulation of Adoption of Alternative Fuels
,”
Transp. Res. Part D: Transp. Environ.
,
15
(
6
), pp.
326
342
.
115.
Vermeulen
,
I.
,
Helmus
,
J. R.
, and
Lees
,
M.
,
2019
, “
Simulation of Future Electric Vehicle Charging Behavior—Effects of Transition From PHEV to FEV
,”
World Elect. Veh. J.
,
10
(
2
), p.
42
.
116.
Vooren
,
A. V. D.
, and
Alkemade
,
F.
,
2012
, “
Managing the Diffusion of Low Emission Vehicles
,”
IEEE Trans. Eng. Manage.
,
59
(
4
), pp.
728
740
.
117.
Wang
,
B.
,
Brême
,
S.
, and
Moon
,
Y. B.
,
2014
, “
Hybrid Modeling and Simulation for Complementing Lifecycle Assessment
,”
Comput. Ind. Eng.
,
69
, pp.
77
88
.
118.
Wang
,
B.
, and
Moon
,
Y. B.
,
2013
, “
Hybrid Modeling and Simulation for Innovation Deployment Strategies
,”
Ind. Manage. Data Syst.
,
113
(
1
), pp.
136
154
.
119.
Wang
,
G.
,
Zhang
,
Q.
,
Li
,
Y.
, and
Li
,
H.
,
2018
, “
Policy Simulation for Promoting Residential PV Considering Anecdotal Information Exchanges Based on Social Network Modelling
,”
Appl. Energy
,
223
, pp.
1
10
.
120.
Wolf
,
I.
,
Schröder
,
T.
,
Neumann
,
J.
, and
de Haan
,
G.
,
2015
, “
Changing Minds About Electric Cars: An Empirically Grounded Agent-Based Modeling Approach
,”
Technol. Forecast. Social Change
,
94
, pp.
269
285
.
121.
Zeng
,
Y.
,
Dong
,
P.
,
Shi
,
Y.
, and
Li
,
Y.
,
2018
, “
On the Disruptive Innovation Strategy of Renewable Energy Technology Diffusion: An Agent-Based Model
,”
Energies
,
11
(
11
), p.
3217
.
122.
Zeng
,
Y.
,
Dong
,
P.
,
Shi
,
Y.
,
Wang
,
L.
, and
Li
,
Y.
,
2020
, “
Analyzing the Co-Evolution of Green Technology Diffusion and Consumers’ Pro-Environmental Attitudes: An Agent-Based Model
,”
J. Clean. Prod.
,
256
, p.
120384
.
123.
Zhang
,
H.
,
Vorobeychik
,
Y.
,
Letchford
,
J.
, and
Lakkaraju
,
K.
,
2016
, “
Data-Driven Agent-Based Modeling, With Application to Rooftop Solar Adoption
,”
Autonom. Agent. Multi-agent Syst.
,
30
(
6
), pp.
1023
1049
.
124.
Zhang
,
H.
, and
Vorobeychik
,
Y.
,
2019
, “
Empirically Grounded Agent-Based Models of Innovation Diffusion: A Critical Review
,”
Artif. Intell. Rev.
,
52
(
1
), pp.
707
741
.
125.
Zhang
,
T.
,
Gensler
,
S.
, and
Garcia
,
R.
,
2011
, “
A Study of the Diffusion of Alternative Fuel Vehicles: An Agent-Based Modeling Approach
,”
J. Prod. Innov. Manage.
,
28
(
2
), pp.
152
168
.
126.
Zhao
,
J.
,
Mazhari
,
E.
,
Celik
,
N.
, and
Son
,
Y.-J.
,
2011
, “
Hybrid Agent-Based Simulation for Policy Evaluation of Solar Power Generation Systems
,”
Simul. Modell. Pract. Theory
,
19
(
10
), pp.
2189
2205
.
127.
Zhuge
,
C.
,
Wei
,
B.
,
Dong
,
C.
,
Shao
,
C.
, and
Shan
,
Y.
,
2019
, “
Exploring the Future Electric Vehicle Market and Its Impacts With an Agent-Based Spatial Integrated Framework: A Case Study of Beijing, China
,”
J. Clean. Prod.
,
221
, pp.
710
737
.
128.
Zhuge
,
C.
,
Dong
,
C.
,
Wei
,
B.
, and
Shao
,
C.
,
2021
, “
Exploring the Role of Technology Innovations in the Diffusion of Electric Vehicle With an Agent-Based Spatial Integrated Model
,”
Resour. Conserv. Recycl.
,
174
, p.
105806
.
129.
Zhuge
,
C.
,
Wei
,
B.
,
Shao
,
C.
,
Dong
,
C.
,
Meng
,
M.
, and
Zhang
,
J.
,
2020
, “
The Potential Influence of Cost-Related Factors on the Adoption of Electric Vehicle: An Integrated Micro-Simulation Approach
,”
J. Clean. Prod.
,
250
, p.
119479
.
130.
Zhuge
,
C.
,
Wei
,
B.
,
Shao
,
C.
,
Shan
,
Y.
, and
Dong
,
C.
,
2020
, “
The Role of the License Plate Lottery Policy in the Adoption of Electric Vehicles: A Case Study of Beijing
,”
Energy Pol.
,
139
, p.
111328
.
131.
Rainock
,
M.
,
Everett
,
D.
,
Pack
,
A.
,
Dahlin
,
E. C.
, and
Mattson
,
C. A.
,
2018
, “
The Social Impacts of Products: A Review
,”
Impact Assess. Proj. Appraisal
,
36
(
3
), pp.
230
241
.
132.
Alemany
,
M. M. E.
,
Esteso
,
A.
, and
Ortiz
,
A.
,
2021
, “
Centralized and Distributed Optimization Models for the Multi-farmer Crop Planning Problem Under Uncertainty: Application to a Fresh Tomato Argentinean Supply Chain Case Study
,”
Comput. Ind. Eng.
,
153
, p.
107048
.
133.
Dabbaghian
,
V.
,
Spicer
,
V.
,
Singh
,
S. K.
,
Borwein
,
P.
, and
Brantingham
,
P.
,
2011
, “
The Social Impact in a High-Risk Community: A Cellular Automata Model
,”
J. Comput. Sci.
,
2
(
3
), pp.
238
246
.
134.
Das
,
R.
, and
Shaw
,
K.
,
2017
, “
Uncertain Supply Chain Network Design Considering Carbon Footprint and Social Factors Using Two-Stage Approach
,”
Clean. Technol. Environ. Pol.
,
19
(
10
), pp.
2491
2519
.
135.
Dutta
,
B. K.
, and
Bandyopadhyay
,
S.
,
2009
, “
Environmental Impact Assessment and Social Impact Assessment – Decision Making Tools for Project Appraisal in India
,”
Proc. World Acad. Sci. Eng. Technol.
,
39
, pp.
646
651
.
136.
El Wali
,
M.
,
Golroudbary
,
S. R.
, and
Kraslawski
,
A.
,
2021
, “
Circular Economy for Phosphorus Supply Chain and Its Impact on Social Sustainable Development Goals
,”
Sci. Tot. Environ.
,
777
, p.
146060
.
137.
Foglia
,
A.
,
Bruni
,
C.
,
Cipolletta
,
G.
,
Eusebi
,
A. L.
,
Frison
,
N.
,
Katsou
,
E.
,
Akyol
,
C.
, and
Fatone
,
F.
,
2021
, “
Assessing Socio-Economic Value of Innovative Materials Recovery Solutions Validated in Existing Wastewater Treatment Plants
,”
J. Clean. Prod.
,
322
, p.
129048
.
138.
He
,
G.
,
Chai
,
J.
,
Qin
,
Y.
,
Xu
,
Z.
, and
Li
,
S.
,
2020
, “
Evaluation of Dam Break Social Impact Assessments Based on an Improved Variable Fuzzy Set Model
,”
Water
,
12
(
4
), p.
970
.
139.
Hosseini-Motlagh
,
S.-M.
,
Samani
,
M. R. G.
, and
Saadi
,
F. A.
,
2020
, “
A Novel Hybrid Approach for Synchronized Development of Sustainability and Resiliency in the Wheat Network
,”
Comput. Electron. Agric.
,
168
, p.
105095
.
140.
Inghels
,
D.
,
Dullaert
,
W.
, and
Bloemhof
,
J.
,
2016
, “
A Model for Improving Sustainable Green Waste Recovery
,”
Res., Conserv. Recycl.
,
110
, pp.
61
73
.
141.
Kabir
,
G.
,
Balek
,
N. B. C.
, and
Tesfamariam
,
S.
,
2018
, “
Consequence-Based Framework for Buried Infrastructure Systems: A Bayesian Belief Network Model
,”
Reliab. Eng. Syst. Saf.
,
180
, pp.
290
301
.
142.
Li
,
T.
,
Roskilly
,
A. P.
, and
Wang
,
Y.
,
2018
, “
Life Cycle Sustainability Assessment of Grid-Connected Photovoltaic Power Generation: A Case Study of Northeast England
,”
Appl. Energy
,
227
, pp.
465
479
.
143.
Lu
,
C.
,
Gao
,
L.
,
Gong
,
W.
,
Hu
,
C.
,
Yan
,
X.
, and
Li
,
X.
,
2021
, “
Sustainable Scheduling of Distributed Permutation Flow-Shop With Non-Identical Factory Using a Knowledge-Based Multi-objective Memetic Optimization Algorithm
,”
Swarm Evol. Comput.
,
60
, p.
100803
.
144.
Mofid-Nakhaee
,
E.
,
Barzinpour
,
F.
, and
Pishvaee
,
M. S.
,
2020
, “
A Sustainable Municipal Solid Waste System Design Considering Public Awareness and Education: A Case Study
,”
Waste Manag. Res.: The J. Int. Solid Wastes Public Cleans. Assoc., ISWA
,
38
(
6
), pp.
626
638
.
145.
Mu
,
Y.
,
Cai
,
W.
,
Evans
,
S.
,
Wang
,
C.
, and
Roland-Holst
,
D.
,
2018
, “
Employment Impacts of Renewable Energy Policies in China: A Decomposition Analysis Based on a CGE Modeling Framework
,”
Appl. Energy
,
210
, pp.
256
267
.
146.
Neugebauer
,
S.
,
Emara
,
Y.
,
Hellerstrom
,
C.
, and
Finkbeiner
,
M.
,
2017
, “
Calculation of Fair Wage Potentials Along Products’ Life Cycle Introduction of a New Midpoint Impact Category for Social Life Cycle Assessment
,”
J. Clean. Prod.
,
143
, pp.
1221
1232
.
147.
Shaverdi
,
M.
,
Yaghoubi
,
S.
, and
Ensafian
,
H.
,
2020
, “
A Multi-Objective Robust Possibilistic Model for Technology Portfolio Optimization Considering Social Impact and Different Types of Financing
,”
Appl. Soft. Comput.
,
86
, p.
105892
.
148.
Tseng
,
S.-H.
,
Chen
,
C.-K.
,
Yu
,
J.-C.
, and
Wang
,
Y.-C.
,
2014
, “
Applying the Agent-Based Social Impact Theory Model to the Bullying Phenomenon in K-12 Classrooms
,”
Simulation
,
90
(
4
), pp.
425
437
.
149.
Xiahou
,
X.
,
Tang
,
L.
,
Yuan
,
J.
,
Zuo
,
J.
, and
Li
,
Q.
,
2022
, “
Exploring Social Impacts of Urban Rail Transit PPP Projects: Towards Dynamic Social Change From the Stakeholder Perspective
,”
Environ. Impact Assess. Rev.
,
93
, p.
106700
.
150.
Peiffer
,
E.
, and
MacCarty
,
N.
,
2021
, “
Assessing the Social Impacts of Improved Cookstoves in Peri-Urban and Rural Uganda Using Card Sorting
,” Volume 3B: 47th Design Automation Conference (DAC),
American Society of Mechanical Engineers
, p.
V03BT03A015
.
151.
Sandhu-Rojon
,
R.
,
2017
, “
Selecting Indicators for Impact Evaluation
,”
UNDP, Viewed
,
7
, p.
2004
.
152.
Ruggles
,
S.
,
Flood
,
S.
,
Foster
,
S.
,
Goeken
,
R.
,
Pacas
,
J.
,
Schouweiler
,
M.
, and
Sobek
,
M.
,
2021
, IPUMS USA: Version 11.0, https://usa.ipums.org/.
153.
Dehaibi
,
N. E.
,
El Dehaibi
,
N.
,
Goodman
,
N. D.
, and
MacDonald
,
E. F.
,
2019
, “
Extracting Customer Perceptions of Product Sustainability From Online Reviews
,”
ASME J. Mech. Des.
,
141
(
12
), p.
121103
.
154.
Stringham
,
B. J.
, and
Mattson
,
C. A.
,
2021
, “
Design of Remote Data Collection Devices for Social Impact Indicators of Products in Developing Countries
,”
Develop. Eng.
,
6
, p.
100062
.
155.
Sovacool
,
B. K.
,
Ryan
,
S. E.
,
Stern
,
P. C.
,
Janda
,
K.
,
Rochlin
,
G.
,
Spreng
,
D.
,
Pasqualetti
,
M. J.
,
Wilhite
,
H.
, and
Lutzenhiser
,
L.
,
2015
, “
Integrating Social Science in Energy Research
,”
Energy Res. Soc. Sci.
,
6
, pp.
95
99
.
156.
Noyes
,
J.
,
Booth
,
A.
,
Moore
,
G.
,
Flemming
,
K.
,
Tunçalp
,
Ö.
, and
Shakibazadeh
,
E.
,
2019
, “
Synthesising Quantitative and Qualitative Evidence to Inform Guidelines on Complex Interventions: Clarifying the Purposes, Designs and Outlining Some Methods
,”
BMJ Global Health
,
4
(
Suppl1
), p.
000893
.
157.
Östlund
,
U.
,
Kidd
,
L.
,
Wengström
,
Y.
, and
Rowa-Dewar
,
N.
,
2011
, “
Combining Qualitative and Quantitative Research Within Mixed Method Research Designs: A Methodological Review
,”
Int. J. Nursing Stud.
,
48
(
3
), pp.
369
383
.
158.
Joshi
,
A.
,
Kale
,
S.
,
Chandel
,
S.
, and
Pal
,
D.
,
2015
, “
Likert Scale: Explored and Explained
,”
British J. Appl. Sci. Technol.
,
7
(
4
), pp.
396
403
.
159.
Abdou
,
M.
,
Hamill
,
L.
, and
Gilbert
,
N.
,
2012
, “Designing and Building an Agent-Based Model,”
Agent-Based Models of Geographical Systems
,
A.
Heppenstall
,
A.
Crooks
,
L.
See
, and
M.
Batty
, eds.,
Springer Netherlands
,
Dordrecht
, pp.
141
165
.
160.
North
,
M. J.
, and
Macal
,
C. M.
,
2007
,
Managing Business Complexity: Discovering Strategic Solutions With Agent-Based Modeling and Simulation
,
Oxford University Press
,
Oxford, UK
.
161.
Vermeulen
,
B.
, and
Pyka
,
A.
,
2018
, “
The Role of Network Topology and the Spatial Distribution and Structure of Knowledge in Regional Innovation Policy: A Calibrated Agent-Based Model Study
,”
Comput. Econ.
,
52
(
3
), pp.
773
808
.
162.
Lungeanu
,
A.
,
McKnight
,
M.
,
Negron
,
R.
,
Munar
,
W.
,
Christakis
,
N. A.
, and
Contractor
,
N. S.
,
2021
, “
Using Trellis Software to Enhance High-Quality Large-Scale Network Data Collection in the Field
,”
Social Netw.
,
66
, pp.
171
184
.
163.
Watts
,
D. J.
, and
Strogatz
,
S. H.
,
1998
, “
Collective Dynamics of ‘Small-World’ Networks
,”
Nature
,
393
(
6684
), pp.
440
442
.
164.
Barabási
,
A.-L.
, and
Bonabeau
,
E.
,
2003
, “
Scale-Free Networks
,”
Sci. Am.
,
288
(
5
), pp.
60
69
.
165.
Papadelis
,
S.
, and
Flamos
,
A.
,
2019
, “An Application of Calibration and Uncertainty Quantification Techniques for Agent-Based Models,”
Understanding Risks and Uncertainties in Energy and Climate Policy
,
H.
Doukas
,
A.
Flamos
, and
J.
Lieu
, eds.,
Springer International Publishing
,
Cham
, pp.
7
9
.
166.
McClarren
,
R.
,
2018
,
Uncertainty Quantification and Predictive Computational Science: A Foundation for Physical Scientists and Engineers
,
Springer Nature
,
Cham
.
167.
Windrum
,
P.
,
Fagiolo
,
G.
, and
Moneta
,
A.
,
2007
, “
Empirical Validation of Agent-Based Models: Alternatives and Prospects
,”
J. Artif. Soc. Social Simul.
,
10
(
2
), p.
8
.
168.
Wilensky
,
U.
, and
Rand
,
W.
,
2015
, “Verification, Validation, and Replication,”
An Introduction to Agent-Based Modeling
,
The MIT Press
,
Cambridge
, pp.
325
336
.
169.
Macal
,
C.
, and
North
,
M.
,
2014
, “
Introductory Tutorial: Agent-Based Modeling and Simulation
,”
Proceedings of the Winter Simulation Conference 2014
,
Savannah, GA
,
Dec. 7
, pp.
6
20
.
170.
Garcia
,
R.
,
2005
, “
Uses of Agent-Based Modeling in Innovation/New Product Development Research
,”
J. Prod. Innov. Manage.
,
22
(
5
), pp.
380
398
.
171.
Liechty
,
J. C.
,
Mabey
,
C. S.
,
Mattson
,
C. A.
,
Salmon
,
J. L.
, and
Weaver
,
J. M.
,
2023
, “
Trade-Off Characterization Between Social and Environmental Impacts Using Agent-Based Product Adoption Models and Life Cycle Assessment*
,”
ASME J. Mech. Des
,
145
(
3
), p.
032001
.
172.
Mattson
,
C. A.
, and
Sorensen
,
C. D.
,
2020
, “Product Development Fundamentals,”
Product Development: Principles and Tools for Creating Desirable and Transferable Designs
,
C. A.
Mattson
and
C. D.
Sorensen
, eds.,
Springer International Publishing
,
Cham
, pp.
12
34
.
173.
Bryson
,
J. M.
,
2004
, “
What to Do When Stakeholders Matter
,”
Public Manage. Rev.
,
6
(
1
), pp.
21
53
.
174.
Rogers
,
P.
,
2014
, “
Theory of Change: Methodological Briefs – Impact Evaluation No. 2, UNICEF Office of Research
,” https://www.unicef-irc.org/publications/pdf/brief_2_theoryofchange_eng.pdf.
175.
Benoît
,
C.
,
Norris
,
G. A.
,
Valdivia
,
S.
,
Ciroth
,
A.
,
Moberg
,
A.
,
Bos
,
U.
,
Prakash
,
S.
,
Ugaya
,
C.
, and
Beck
,
T.
,
2010
, “
The Guidelines for Social Life Cycle Assessment of Products: Just in Time
!”
Int. J. Life Cycle Assess.
,
15
(
2
), pp.
156
163
.
176.
Ottosson
,
H. J.
,
Mattson
,
C. A.
, and
Dahlin
,
E. C.
,
2019
, “
Analysis of Perceived Social Impacts of Existing Products Designed for the Developing World, With Implications for New Product Development
,”
ASME J. Mech. Des.
,
142
(
5
), p.
051101
.
177.
Bruch
,
E.
, and
Atwell
,
J.
,
2015
, “
Agent-Based Models in Empirical Social Research
,”
Sociol. Meth. Res.
,
44
(
2
), pp.
186
221
.
178.
Rogers
,
E. M.
,
1995
,
Diffusion of Innovations
, 4th ed.,
Free Press
,
New York
.
179.
Wassenaar
,
H. J.
, and
Chen
,
W.
,
2003
, “
An Approach to Decision-Based Design With Discrete Choice Analysis for Demand Modeling
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
490
497
.
180.
Ajzen
,
I.
,
1991
, “
The Theory of Planned Behavior
,”
Organ. Behav. Human Decis. Process.
,
50
(
2
), pp.
179
211
.
181.
Williams
,
M. D.
,
Rana
,
N. P.
, and
Dwivedi
,
Y. K.
,
2015
, “
The Unified Theory of Acceptance and Use of Technology (UTAUT): a Literature Review
,”
J. Enterprise Inf. Manage.
,
28
(
3
), pp.
443
488
.
182.
Filatova
,
T.
,
Verburg
,
P. H.
,
Parker
,
D. C.
, and
Stannard
,
C. A.
,
2013
, “
Spatial Agent-Based Models for Socio-Ecological Systems: Challenges and Prospects
,”
Environ. Modell. Softw.
,
45
, pp.
1
7
.
183.
Castle
,
C. J. E.
, and
Crooks
,
A. T.
,
2006
, “
Principles and Concepts of Agent-Based Modelling for Developing Geospatial Simulations
,” (
110
), p.
62
.
184.
Stevenson
,
P. D.
, and
Mattson
,
C. A.
,
2019
, “
The Personification of Big Data
,”
Proc. Design Soc.: Int. Conf. Eng. Design
,
1
(
1
), pp.
4019
4028
.
185.
Dreiseitl
,
S.
, and
Ohno-Machado
,
L.
,
2002
, “
Logistic Regression and Artificial Neural Network Classification Models: A Methodology Review
,”
J. Biomed. Inf.
,
35
(
5–6
), pp.
352
359
.
186.
Beisbart
,
C.
, and
Saam
,
N. J.
,
2019
,
Computer Simulation Validation
,
Springer International Publishing
,
Switzerland
.
187.
Patki
,
N.
,
Wedge
,
R.
, and
Veeramachaneni
,
K.
,
2016
, “
The Synthetic Data Vault
,”
IEEE International Conference on Data Science and Advanced Analytics
,
Montreal, QC, Canada
,
Oct. 17–19
, pp.
399
410
.
188.
Wilensky
,
U.
, and
Rand
,
W.
,
2015
,
An Introduction to Agent-Based Modeling: Modeling Natural, Social, and Engineered Complex Systems With NetLogo
,
MIT Press
,
Cambridge, MA
.
189.
ten Broeke
,
G.
,
van Voorn
,
G.
, and
Ligtenberg
,
A.
,
2016
, “
Which Sensitivity Analysis Method Should I Use for My Agent-Based Model
?”
J. Artif. Soc. Social Simul.: JASSS
,
19
(
1
), pp.
5
.
190.
Ramsey
,
F.
, and
Schafer
,
D.
,
2012
,
The Statistical Sleuth: A Course in Methods of Data Analysis
, 3rd ed.,
Cengage Learning
,
Boston, MA
.
You do not currently have access to this content.