Abstract

Identifying a reliable path in uncertain environments is essential for designing reliable off-road autonomous ground vehicles (AGVs) considering postdesign operations. This article presents a novel bio-inspired approach for model-based multivehicle mission planning under uncertainty for off-road AGVs subjected to mobility reliability constraints in dynamic environments. A physics-based vehicle dynamics simulation model is first employed to predict vehicle mobility (i.e., maximum attainable speed) for any given terrain and soil conditions. Based on physics-based simulations, the vehicle state mobility reliability in operation is then analyzed using an adaptive surrogate modeling method to overcome the computational challenges in mobility reliability analysis by adaptively constructing a surrogate. Subsequently, a bio-inspired approach called Physarum-based algorithm is used in conjunction with a navigation mesh to identify an optimal path satisfying a specific mobility reliability requirement. The developed Physarum-based framework is applied to reliability-based path planning for both a single-vehicle and multiple-vehicle scenarios. A case study is used to demonstrate the efficacy of the proposed methods and algorithms. The results show that the proposed framework can effectively identify optimal paths for both scenarios of single and multiple vehicles. The required computational time is less than the widely used Dijkstra-based method.

References

1.
Liu
,
Q.
,
Zhao
,
L.
,
Tan
,
Z.
, and
Chen
,
W.
,
2017
, “
Global Path Planning for Autonomous Vehicles in Off-Road Environment via an A-Star Algorithm
,”
Int. J. Veh. Auton. Syst.
,
13
(
4
), pp.
330
339
.
2.
Oksanen
,
T.
, and
Visala
,
A.
,
2009
, “
Coverage Path Planning Algorithms for Agricultural Field Machines
,”
J. Field Rob.
,
26
(
8
), pp.
651
668
.
3.
Coombs
,
D.
,
Murphy
,
K.
,
Lacaze
,
A.
, and
Legowik
,
S.
,
2000
, “
Driving Autonomously Off-Road up to 35 km/h
,”
Proceedings of the IEEE Intelligent Vehicles Symposium 2000 (Cat. No. 00TH8511)
,
Dearborn, MI
,
Oct. 5
, IEEE, pp.
186
191
.
4.
Quann
,
M.
,
Ojeda
,
L.
,
Smith
,
W.
,
Rizzo
,
D.
,
Castanier
,
M.
, and
Barton
,
K.
,
2020
, “
Off-Road Ground Robot Path Energy Cost Prediction Through Probabilistic Spatial Mapping
,”
J. Field Rob.
,
37
(
3
), pp.
421
439
.
5.
Jiang
,
C.
,
Hu
,
Z.
,
Mourelatos
,
Z. P.
,
Gorsich
,
D.
,
Jayakumar
,
P.
,
Fu
,
Y.
, and
Majcher
,
M.
,
2021
, “
R2-RRT*: Reliability-Based Robust Mission Planning of Off-Road Autonomous Ground Vehicle Under Uncertain Terrain Environment
,”
IEEE Trans. Autom. Sci. Eng.
,
1
(
1
), pp.
1
17
.
6.
McCullough
,
M.
,
Jayakumar
,
P.
,
Dasch
,
J.
, and
Gorsich
,
D.
,
2017
, “
The Next Generation NATO Reference Mobility Model Development
,”
J. Terramech.
,
73
(
1
), pp.
49
60
.
7.
Petrick
,
E.
,
Janosi
,
Z.
, and
Haley
,
P.
,
1981
, “
The Use of the Nato Reference Mobility Model in Military Vehicle Procurement
,”
SAE Technical Paper
,
1
(
1
), pp.
810373-1
810373-8
.
8.
Bradbury
,
M.
,
Dasch
,
J.
,
Gonzalez
,
R.
,
Hodges
,
H.
,
Jain
,
A.
,
Iagnemma
,
K.
,
Letherwood
,
M.
,
Mccullough
,
M.
,
Priddy
,
J.
, and
Wojtysiak
,
B.
,
2016
, “Next-Generation NATO Reference Mobility Model (NG-NRMM),”
Tank Automotive Research, Development and Engineering Center (TARDEC)
,
Warren, MI
.
9.
McCullough
,
M.
,
Jayakumar
,
P.
,
Dasch
,
J.
, and
Gorsich
,
D.
,
2016
, “Developing the Next Generation NATO Reference Mobility Model,”
US Army Tardec
,
Warren, MI
.
10.
Yamashita
,
H.
,
Jayakumar
,
P.
,
Alsaleh
,
M.
, and
Sugiyama
,
H.
,
2018
, “
Physics-Based Deformable Tire–Soil Interaction Model for Off-Road Mobility Simulation and Experimental Validation
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
2
), p.
021002
.
11.
Laughery
,
S.
,
Gerhart
,
G.
, and
Goetz
,
R.
,
1990
, “Bekker's Terramechanics Model for Off-Road Vehicle Research,”
TACOM Research Development and Engineering Center
,
Warren MI
.
12.
Hetherington
,
J. G.
,
2001
, “
The Applicability of the MMP Concept in Specifying Off-Road Mobility for Wheeled and Tracked Vehicles
,”
J. Terramech.
,
38
(
2
), pp.
63
70
.
13.
Gonzalez
,
R.
,
Jayakumar
,
P.
, and
Iagnemma
,
K.
,
2017
, “
Generation of Stochastic Mobility Maps for Large-Scale Route Planning of Ground Vehicles: A Case Study
,”
J. Terramech.
,
69
(
1
), pp.
1
11
.
14.
Haug
,
E. J.
,
Adkins
,
F. A.
, and
Coroian
,
D.
,
1998
, “
Domains of Mobility for a Planar Body Moving Among Obstacles
,”
ASME J. Mech. Des.
,
120
(
3
), pp.
462
467
.
15.
Gonzalez
,
R.
,
Jayakumar
,
P.
, and
Iagnemma
,
K.
,
2017
, “
Stochastic Mobility Prediction of Ground Vehicles Over Large Spatial Regions: A Geostatistical Approach
,”
Auton. Rob.
,
41
(
2
), pp.
311
331
.
16.
Choi
,
K.
,
Jayakumar
,
P.
,
Funk
,
M.
,
Gaul
,
N.
, and
Wasfy
,
T. M.
,
2019
, “
Framework of Reliability-Based Stochastic Mobility Map for Next Generation Nato Reference Mobility Model
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
2
), p.
021012
.
17.
Jayakumar
,
P.
, and
Mechergui
,
D.
,
2019
, “Efficient Generation of Accurate Mobility Maps Using Machine Learning Algorithms,”
US Army Tardec
,
Warren, MI
.
18.
Hu
,
Z.
,
Mourelatos
,
Z. P.
,
Gorsich
,
D.
,
Jayakumar
,
P.
, and
Majcher
,
M.
,
2020
, “
Testing Design Optimization for Uncertainty Reduction in Generating Off-Road Mobility Map Using a Bayesian Approach
,”
ASME J. Mech. Des.
,
142
(
2
), p.
021402
.
19.
Yang
,
D.
,
1993
, “
Collision-Free Path Planning by Using Nonperiodic B-Spline Curves
,”
ASME J. Mech. Des.
,
115
(
3
), pp.
679
684
.
20.
Melchior
,
N. A.
, and
Simmons
,
R.
,
2007
, “
Particle RRT for Path Planning With Uncertainty
,”
Proceedings 2007 IEEE International Conference on Robotics and Automation
,
Rome, Italy
,
Apr. 10–14
, IEEE, pp.
1617
1624
.
21.
Sun
,
W.
,
van den Berg
,
J.
, and
Alterovitz
,
R.
,
2016
, “
Stochastic Extended LQR for Optimization-Based Motion Planning Under Uncertainty
,”
IEEE Trans. Autom. Sci. Eng.
,
13
(
2
), pp.
437
447
.
22.
Van Den Berg
,
J.
,
Abbeel
,
P.
, and
Goldberg
,
K.
,
2011
, “
LQG-MP: Optimized Path Planning for Robots With Motion Uncertainty and Imperfect State Information
,”
Int. J. Rob. Res.
,
30
(
7
), pp.
895
913
.
23.
Zhang
,
B.
,
Mao
,
Z.
,
Liu
,
W.
, and
Liu
,
J.
,
2015
, “
Geometric Reinforcement Learning for Path Planning of UAVs
,”
J. Intell. Rob. Syst.
,
77
(
2
), pp.
391
409
.
24.
Chao
,
N.
,
Liu
,
Y.-k.
,
Xia
,
H.
,
Ayodeji
,
A.
, and
Bai
,
L.
,
2018
, “
Grid-Based RRT* for Minimum Dose Walking Path-Planning in Complex Radioactive Environments
,”
Ann. Nucl. Energy
,
115
(
1
), pp.
73
82
.
25.
Liu
,
Y.
,
Jiang
,
C.
,
Mourelatos
,
Z. P.
,
Gorsich
,
D.
,
Jayakumar
,
P.
,
Fu
,
Y.
,
Majcher
,
M.
, and
Hu
,
Z.
,
2021
, “
Simulation-Based Mission Mobility Reliability Analysis of Off-Road Ground Vehicles
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031701
.
26.
Sampedro
,
C.
,
Bavle
,
H.
,
Sanchez-Lopez
,
J. L.
,
Fernández
,
R. A. S.
,
Rodríguez-Ramos
,
A.
,
Molina
,
M.
, and
Campoy
,
P.
,
2016
, “
A Flexible and Dynamic Mission Planning Architecture for UAV Swarm Coordination
,”
2016 International Conference on Unmanned Aircraft Systems (ICUAS)
,
Arlington, VA
,
June 7–10
, IEEE, pp.
355
363
.
27.
Wei
,
Y.
,
Madey
,
G. R.
, and
Blake
,
M. B.
,
2013
, “
Agent-Based Simulation for UAV Swarm Mission Planning and Execution
,”
Proceedings of the Agent-Directed Simulation Symposium
,
San Diego, CA
,
Apr. 7–10
, pp.
1
8
.
28.
Dui
,
H.
,
Zhang
,
C.
,
Bai
,
G.
, and
Chen
,
L.
,
2021
, “
Mission Reliability Modeling of UAV Swarm and Its Structure Optimization Based on Importance Measure
,”
Reliab. Eng. Syst. Saf.
,
215
(
1
), p.
107879
.
29.
“PYCHRONO: A Multi-Physics Simulation Engine,” Project Chrono, https://projectchrono.org/pychrono, Accessed February 14, 2021.
30.
Serban
,
R.
,
Olsen
,
N.
,
Negrut
,
D.
,
Recuero
,
A.
, and
Jayakumar
,
P.
, “
A Co-Simulation Framework for High-Performance, High-Fidelity Simulation of Ground Vehicle-Terrain Interaction
,”
NATO AVT-265 Specialists’ Meeting
,
Vilnius, Lithuania
,
May 1
, p.
24
.
31.
Rubinstein
,
D.
, and
Hitron
,
R.
,
2004
, “
A Detailed Multi-Body Model for Dynamic Simulation of off-Road Tracked Vehicles
,”
J. Terramech.
,
41
(
2–3
), pp.
163
173
.
32.
Liang
,
C.-Y.
,
Allen
,
R. W.
,
Rosenthal
,
T. J.
,
Chrstos
,
J. P.
, and
Nunez
,
P.
,
2004
, “
Tire Modeling for Off-Road Vehicle Simulation
,”
SAE Trans.
,
113
(
1
), pp.
1063
1073
.
33.
Krenn
,
R.
, and
Gibbesch
,
A.
,
2011
, “
Soft Soil Contact Modeling Technique for Multi-Body System Simulation
,”
Trends Comput. Contact Mech.
,
1
(
1
), pp.
135
155
.
34.
Senatore
,
C.
, and
Sandu
,
C.
,
2011
, “
Off-Road Tire Modeling and the Multi-Pass Effect for Vehicle Dynamics Simulation
,”
J. Terramech.
,
48
(
4
), pp.
265
276
.
35.
Tasora
,
A.
,
Serban
,
R.
,
Mazhar
,
H.
,
Pazouki
,
A.
,
Melanz
,
D.
,
Fleischmann
,
J.
,
Taylor
,
M.
,
Sugiyama
,
H.
, and
Negrut
,
D.
,
2015
, “
Chrono: An Open Source Multi-Physics Dynamics Engine
,”
International Conference on High Performance Computing in Science and Engineering
,
Cham
,
Springer
,
May 25
, pp.
19
49
.
36.
Serban
,
R.
,
Taylor
,
M.
,
Negrut
,
D.
, and
Tasora
,
A.
,
2019
, “
Chrono: Vehicle: Template-Based Ground Vehicle Modelling and Simulation
,”
Int. J. Veh. Perform.
,
5
(
1
), pp.
18
39
.
37.
Gallina
,
A.
,
Krenn
,
R.
,
Scharringhausen
,
M.
,
Uhl
,
T.
, and
Schäfer
,
B.
,
2014
, “
Parameter Identification of a Planetary Rover Wheel–Soil Contact Model via a Bayesian Approach
,”
J. Field Rob.
,
31
(
1
), pp.
161
175
.
38.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2016
, “
Global Sensitivity Analysis-Enhanced Surrogate (GSAS) Modeling for Reliability Analysis
,”
Struct. Multidiscipl. Optim.
,
53
(
3
), pp.
501
521
.
39.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2018
, “
Adaptive Surrogate Modeling for Time-Dependent Multidisciplinary Reliability Analysis
,”
ASME J. Mech. Des.
,
140
(
2
), p.
021401
.
40.
Kaminsky
,
A. L.
,
Wang
,
Y.
, and
Pant
,
K.
,
2021
, “
An Efficient Batch K-Fold Cross-Validation Voronoi Adaptive Sampling Technique for Global Surrogate Modeling
,”
ASME J. Mech. Des.
,
143
(
1
), p.
011706
.
41.
Zhang
,
Y.
,
Kim
,
N. H.
, and
Haftka
,
R. T.
,
2020
, “
General-Surrogate Adaptive Sampling Using Interquartile Range for Design Space Exploration
,”
ASME J. Mech. Des.
,
142
(
5
), p.
051402
.
42.
Echard
,
B.
,
Gayton
,
N.
, and
Lemaire
,
M.
,
2011
, “
AK-MCS: An Active Learning Reliability Method Combining Kriging and Monte Carlo Simulation
,”
Struct. Saf.
,
33
(
2
), pp.
145
154
.
43.
Fauriat
,
W.
, and
Gayton
,
N.
,
2014
, “
AK-SYS: An Adaptation of the AK-MCS Method for System Reliability
,”
Reliab. Eng. Syst. Saf.
,
123
(
1
), pp.
137
144
.
44.
Deng
,
Y.
,
Chen
,
Y.
,
Zhang
,
Y.
, and
Mahadevan
,
S.
,
2012
, “
Fuzzy Dijkstra Algorithm for Shortest Path Problem Under Uncertain Environment
,”
Appl. Soft Comput.
,
12
(
3
), pp.
1231
1237
.
45.
Tero
,
A.
,
Kobayashi
,
R.
, and
Nakagaki
,
T.
,
2006
, “
Physarum Solver: A Biologically Inspired Method of Road-Network Navigation
,”
Phys. A Stat. Mech. Appl.
,
363
(
1
), pp.
115
119
.
46.
Hartley
,
T. P.
, and
Mehdi
,
Q. H.
,
2012
, “
In-Game Adaptation of a Navigation Mesh Cell Path
,”
2012 17th International Conference on Computer Games (CGAMES)
,
Louisville, KY
,
July 30
, pp.
230
236
.
47.
Xu
,
X.
,
Huang
,
M.
, and
Zou
,
K.
,
2011
, “
Automatic Generated Navigation Mesh Algorithm on 3D Game Scene
,”
Procedia Eng.
,
15
(
1
), pp.
3215
3219
.
48.
Rufat
,
Dzhelil
,
2021
,
Triangle 20200404 Documentation
,
Dzhelil Rufat
, https://rufat.be/triangle/,
Accessed December 16, 2021
.
49.
Shewchuk
,
J. R.
,
2008
,
A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator
,
Computer Science Division University of California at Berkeley
,
Berkeley, CA
, pp.
94720
1776
, https://www.cs.cmu.edu/,
Accessed December 16, 2021
.
50.
Nakagaki
,
T.
,
Yamada
,
H.
, and
Tóth
,
Á
,
2000
, “
Maze-Solving by an Amoeboid Organism
,”
Nature
,
407
(
6803
), pp.
470
470
.
51.
Zhang
,
X.
,
Chan
,
F. T.
,
Yang
,
H.
, and
Deng
,
Y.
,
2017
, “
An Adaptive Amoeba Algorithm for Shortest Path Tree Computation in Dynamic Graphs
,”
Inf. Sci.
,
405
(
1
), pp.
123
140
.
You do not currently have access to this content.