Abstract

Origami patterns have been used in the design of deployable arrays. In engineering applications, paper creases are often replaced with surrogate folds by providing a hinge-like function to enable motion. Overconstraint observed in multivertex origami patterns combined with imperfect manufacturing may cause the resulting mechanisms to bind. The removal of redundant constraints decreases the likelihood of binding, may simplify the overall system, and may decrease the actuation force by reducing friction and other resistance to motion. This paper introduces a visual and iterative approach to eliminating redundant constraints in origami-based mechanisms through joint removal. Several techniques for joint removal are outlined and illustrated to reduce overconstraints in origami arrays.

References

1.
Munawar
,
H. S.
,
2020
, “
Reconfigurable Origami Antennas: A Review of the Existing Technology and Its Future Prospects
,”
Int. J. Wireless Microwave Technol. (IJWMT)
,
10
(
4
), pp.
34
38
.
2.
Dufour
,
L.
,
Datashvili
,
L. S.
,
Guinot
,
F.
,
Legay
,
H.
, and
Goussetis
,
G.
,
2021
, “
Origami Deployable Reflector Antenna for CubeSats
,”
AIAA Scitech 2021 Forum
,
Virtual
,
January
, p.
1703
.
3.
Miguélez-Gómez
,
N.
,
Parkhurst
,
J. M.
,
Pepin
,
K.
,
Moline
,
N.
,
Leblanc
,
S.
,
Udrea
,
B.
, and
Rojas-Nastrucci
,
E. A.
,
2020
, “
Thickness-Accommodation in X-Band Origami-Based Reflectarray Antenna for Small Satellites Applications
,”
2020 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE)
,
Venice, Italy
,
Oct. 12–14
, IEEE, pp.
54
59
.
4.
Johnson
,
M.
,
Chen
,
Y.
,
Hovet
,
S.
,
Xu
,
S.
,
Wood
,
B.
,
Ren
,
H.
,
Tokuda
,
J.
, and
Tse
,
Z. T. H.
,
2017
, “
Fabricating Biomedical Origami: A State-of-the-Art Review
,”
Int. J. Comput. Assist. Radiol. Surg.
,
12
(
11
), pp.
2023
2032
.
5.
Rodrigues
,
G. V.
, and
Savi
,
M. A.
,
2021
, “
Reduced-Order Model Description of Origami Stent Built With Waterbomb
,”
Sciences
,
472
(
2190
), p.
20150846
.
6.
Velvaluri
,
P.
,
Soor
,
A.
,
Plucinsky
,
P.
,
de Miranda
,
R. L.
,
James
,
R. D.
, and
Quandt
,
E.
,
2021
, “
Origami-Inspired Thin-Film Shape Memory Alloy Devices
,”
Sci. Rep.
,
11
(
1
), pp.
1
10
.
7.
Liu
,
C.
,
Maiolino
,
P.
,
Yang
,
Y.
, and
You
,
Z.
,
2020
, “
Hybrid Soft-Rigid Deployable Structure Inspired by Thick-Panel Origami
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Vol.
83990
,
American Society of Mechanical Engineers
, Paper No. V010T10A080.
8.
Ma
,
J.
,
Feng
,
H.
,
Chen
,
Y.
,
Hou
,
D.
, and
You
,
Z.
,
2020
, “
Folding of Tubular Waterbomb
,”
Research
,
2020
, p.
1735081
.
9.
Tachi
,
T.
,
2010
, “
Geometric Considerations for the Design of Rigid Origami Structures
,”
Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2010
,
Shanghai, China
,
Nov. 8–12
, pp.
458
460
.
10.
Carvalho
,
M.
, and
Volakis
,
J. L.
,
2021
, “
Performance of Partially Deployed Spaceborne Ultra-Wideband Miura-Ori Apertures
,”
IEEE Open J. Antennas Propag.
,
2
, pp.
718
725
.
11.
Kaddour
,
A.-S.
,
Zekios
,
C. L.
, and
Georgakapoulos
,
S. V.
,
2020
, “
A Reconfigurable Origami Reflectarray
,”
2020 14th European Conference on Antennas and Propagation (EuCAP)
,
Copenhagen, Denmark
,
Mar. 15–20
, IEEE, pp.
1
4
.
12.
Kaddour
,
A.-S.
,
Velez
,
C. A.
, and
Georgakopoulos
,
S. V.
,
2020
, “
A Deployable and Reconfigurable Origami Reflectarray Based on the Miura-Ori Pattern
,”
2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting
,
Montreal, QC, Canada
,
July 5–10
, IEEE, pp.
91
92
.
13.
Zhang
,
Y.-J.
,
Wang
,
L.-C.
,
Song
,
W.-L.
,
Chen
,
M.
, and
Fang
,
D.
,
2020
, “
Hexagon-Twist Frequency Reconfigurable Antennas Via Multi-Material Printed Thermo-Responsive Origami Structures
,”
Front. Mater.
,
7
, p.
417
.
14.
Hamza
,
M.
,
Zekios
,
C. L.
, and
Georgakopoulos
,
S. V.
,
2021
, “
A Physically Reconfigurable 1× 8 Monolithic Thick Origami Array
,”
2021 IEEE 21st Annual Wireless and Microwave Technology Conference (WAMICON)
,
Sand Key, FL
,
Apr. 28–29
, IEEE, pp.
1
3
.
15.
Sareh
,
P.
, and
Guest
,
S. D.
,
2015
, “
Design of Isomorphic Symmetric Descendants of the Miura-Ori
,”
Smart Mater. Struct.
,
24
(
8
), p.
085001
.
16.
Chen
,
Y.
,
Fan
,
L.
,
Bai
,
Y.
,
Feng
,
J.
, and
Sareh
,
P.
,
2020
, “
Assigning Mountain-Valley Fold Lines of Flat-Foldable Origami Patterns Based on Graph Theory and Mixed-Integer Linear Programming
,”
Comput. Struct.
,
239
, p.
106328
.
17.
Bowen
,
L. A.
,
Grames
,
C. L.
,
Magleby
,
S. P.
,
Howell
,
L. L.
, and
Lang
,
R. J.
,
2013
, “
A Classification of Action Origami As Systems of Spherical Mechanisms
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111008
.
18.
Shah
,
S. I. H.
,
Bashir
,
S.
,
Ashfaq
,
M.
,
Altaf
,
A.
, and
Rmili
,
H.
,
2021
, “
Lightweight and Low-Cost Deployable Origami Antennas—A Review
,”
IEEE Access
,
9
, pp.
86429
86448
.
19.
Mathew
,
B.
, and
Singh
,
H.
,
2021
, “
Compliant Mechanism and Origami Usage in Aerospace and Space Application
,”
IOP Conf. Seri.: Earth Environ. Sci.
,
775
(
1
), p.
012008
.
20.
Bhattarai
,
S.
,
Kim
,
H.
, and
Oh
,
H.-U.
,
2020
, “
Cubesat’s Deployable Solar Panel With Viscoelastic Multilayered Stiffener for Launch Vibration Attenuation
,”
Int. J. Aerosp. Eng.
,
2020
, p.
8820619
.
21.
Bhattarai
,
S.
,
Go
,
J.-S.
,
Kim
,
H.
, and
Oh
,
H.-U.
,
2021
, “
Development of a Novel Deployable Solar Panel and Mechanism for 6U Cubesat of Step Cube Lab-II
,”
Aerospace
,
8
(
3
), p.
64
.
22.
Kaddour
,
A.-S.
,
Velez
,
C. A.
,
Hamza
,
M.
,
Brown
,
N. C.
,
Ynchausti
,
C.
,
Magleby
,
S. P.
,
Howell
,
L. L.
, and
Georgakopoulos
,
S. V.
,
2020
, “
A Foldable and Reconfigurable Monolithic Reflectarray for Space Applications
,”
IEEE Access
,
8
, p.
219355
.
23.
Chahat
,
Nacer
,
2021
,
CubeSat Antenna Design
,
John Wiley & Sons
, pp.
35
89
.
24.
McCarthy
,
J. M.
, and
Soh
,
G. S.
,
2010
,
Geometric Design of Linkages
, Vol.
11
,
Springer Science & Business Media
,
Berlin/Heidelberg, Germany
.
25.
Chiang
,
C.-H.
,
1988
,
Kinematics of Spherical Mechanisms
, Vol.
5
,
Cambridge University Press
,
Cambridge, UK
.
26.
Hyatt
,
L. P.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2020
, “
Developable Mechanisms on Right Conical Surfaces
,”
Mech. Mach. Theory
,
149
, p.
103813
.
27.
Barreto
,
R. L. P.
,
Morlin
,
F. V.
,
de Souza
,
M. B.
,
Carboni
,
A. P.
, and
Martins
,
D.
,
2021
, “
Multiloop Origami Inspired Spherical Mechanisms
,”
Mech. Mach. Theory
,
155
, p.
104063
.
28.
Peng
,
R.
,
Ma
,
J.
, and
Chen
,
Y.
,
2018
, “
The Effect of Mountain-Valley Folds on the Rigid Foldability of Double Corrugated Pattern
,”
Mech. Mach. Theory
,
128
, pp.
461
474
.
29.
Lang
,
R. J.
,
2017
,
Twists, Tilings, and Tessellations: Mathematical Methods for Geometric Origami
,
CRC Press
,
Boca Raton, FL
.
30.
Gogu
,
G.
,
2005
, “
Chebychev–Grübler–Kutzbach’s Criterion for Mobility Calculation of Multi-Loop Mechanisms Revisited Via Theory of Linear Transformations
,”
Eur. J. Mech. A/Solids
,
24
(
3
), pp.
427
441
.
31.
Wei
,
G.
,
Chen
,
Y.
, and
Dai
,
J. S.
,
2014
, “
Synthesis, Mobility, and Multifurcation of Deployable Polyhedral Mechanisms With Radially Reciprocating Motion
,”
ASME J. Mech. Des.
,
136
(
9
), p.
091003
.
32.
Wohlhart
,
K
,
Chen
,
Y.
, and
Dai
,
J. S.
,
2008
, “On Advances in Robot Kinematics,”
Advances in Robot Kinematics: Analysis and Design
,
J.
Lenarcic
,
and P.
Wenger
, eds.,
Springer Science & Business Media B.V.
,
Berlin/Heidelberg, Germany
, pp.
165
176
.
33.
Wei
,
G.
,
Ding
,
X.
, and
Dai
,
J. S.
,
2010
, “
Mobility and Geometric Analysis of the Hoberman Switch-Pitch Ball and Its Variant
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
031010
.
34.
Chen
,
Y.
,
Feng
,
J.
, and
Liu
,
Y.
,
2016
, “
A Group-Theoretic Approach to the Mobility and Kinematic of Symmetric Over-Constrained Structures
,”
Mech. Mach. Theory
,
105
, pp.
91
107
.
35.
Dai
,
J. S.
,
2015
, “
Euler–Rodrigues Formula Variations, Quaternion Conjugation and Intrinsic Connections
,”
Mech. Mach. Theory
,
92
, pp.
144
152
.
36.
Yu
,
H.
,
Guo
,
Z.
, and
Wang
,
J.
,
2018
, “
A Method of Calculating the Degree of Freedom of Foldable Plate Rigid Origami With Adjacency Matrix
,”
Adv. Mech. Eng.
,
10
(
6
), p.
1687814018779696
.
37.
Mavroidis
,
C.
, and
Roth
,
B.
,
1995
, “
New and Revised Overconstrained Mechanisms
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
75
82
.
38.
Cui
,
L.
, and
Dai
,
J. S.
,
2011
, “
Axis Constraint Analysis and Its Resultant 6R Double-Centered Overconstrained Mechanisms
,”
ASME J. Mech. Rob.
,
3
(
3
), p.
103813
.
39.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
,
2004
, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
220
229
.
40.
Zhang
,
K.
, and
Dai
,
J. S.
,
2014
, “
A Kirigami-Inspired 8R Linkage and Its Evolved Overconstrained 6R Linkages With the Rotational Symmetry of Order Two
,”
ASME J. Mech. Rob.
,
6
(
2
), p.
021007
.
41.
Shen
,
X.
,
Xu
,
L.
, and
Li
,
Q.
,
2021
, “
Motion/Force Constraint Indices of Redundantly Actuated Parallel Manipulators With Over Constraints
,”
Mech. Mach. Theory
,
165
, p.
104427
.
42.
Wei
,
G.
, and
Dai
,
J. S.
,
2014
, “
Origami-Inspired Integrated Planar-Spherical Overconstrained Mechanisms
,”
ASME J. Mech. Des.
,
136
(
5
), p.
051003
.
43.
Chen
,
Y.
, and
You
,
Z.
,
2012
, “Spatial Overconstrained Linkages—The Lost Jade,”
Explorations in the History of Machines and Mechanisms
, Vol.
15
,
T.
Koetsier
, and
M.
Ceccarelli
, eds.,
Springer
,
Dordrecht
, pp.
535
550
.
44.
Wojtyra
,
M.
,
2005
, “
Joint Reaction Forces in Multibody Systems With Redundant Constraints
,”
Multibody Syst. Dyn.
,
14
(
1
), pp.
23
46
.
45.
Wojtyra
,
M.
, and
Frączek
,
J.
,
2013
, “
Comparison of Selected Methods of Handling Redundant Constraints in Multibody Systems Simulations
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
2
), p.
021007
.
46.
Tachi
,
T.
,
2009
, “
Generalization of Rigid-Foldable Quadrilateral-Mesh Origami
,”
Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2009
,
Valencia, Spain
,
Sept. 28–Oct. 2
.
47.
Nijenhuis
,
M.
,
Meijaard
,
J.
, and
Brouwer
,
D.
,
2020
, “
Misalignments in an Overconstrained Flexure Mechanism: A Cross-Hinge Stiffness Investigation
,”
Precis. Eng.
,
62
, pp.
181
195
.
48.
Cammarata
,
A.
,
2017
, “
A Novel Method to Determine Position and Orientation Errors in Clearance-Affected Overconstrained Mechanisms
,”
Mech. Mach. Theory
,
118
, pp.
247
264
.
49.
Rameau
,
J.-F.
,
Serré
,
P.
, and
Moinet
,
M.
,
2019
, “
Clearance Vs. Tolerance for Mobile Overconstrained Mechanisms
,”
Mech. Mach. Theory
,
136
, pp.
284
306
.
50.
Yellowhorse
,
A.
, and
Howell
,
L. L.
,
2016
, “
Creating Rigid Foldability to Enable Mobility of Origami-Inspired Mechanisms
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
011011
.
51.
Wiener
,
M. R.
,
2016
,
A Foundation for Analysis of Spherical System Linkages Inspired by Origami and Kinematic Paper Art
,
Lehigh University
,
Bethlehem, PA
.
52.
Cai
,
J.
,
Deng
,
X.
,
Xu
,
Y.
, and
Feng
,
J.
,
2014
, “
Constraint Analysis and Redundancy of Planar Closed Loop Double Chain Linkages
,”
Adv. Mech. Eng.
,
6
, p.
635423
.
53.
Cai
,
J.
,
Qian
,
Z.
,
Jiang
,
C.
,
Feng
,
J.
, and
Xu
,
Y.
,
2016
, “
Mobility and Kinematic Analysis of Foldable Plate Structures Based on Rigid Origami
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
064502
.
54.
Lang
,
R. J.
,
Brown
,
N.
,
Ignaut
,
B.
,
Magleby
,
S.
, and
Howell
,
L.
,
2019
, “
Rigidly Foldable Thick Origami Using Designed-Offset Linkages
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Vol.
59247
,
American Society of Mechanical Engineers
, Paper No. V05BT07A035.
55.
Rubio
,
A. J.
,
Kaddour
,
A. -S.
,
Ynchausti
,
C.
,
Magleby
,
S.
,
Howell
,
L. L.
, and
Georgakopoulos
,
S. V.
,
2021
, “
A Foldable Reflectarray on a Hexagonal Twist Origami Structure
,”
IEEE Open J. Antennas Propag.
,
2
, pp.
1108
1119
.
56.
Legendre
,
A.
,
1791
,
Elements de geometrie
,
Didot
,
Paris
.
57.
McInerney
,
J.
,
Chen
,
B. G.-g.
,
Theran
,
L.
,
Santangelo
,
C. D.
, and
Rocklin
,
D. Z.
,
2020
, “
Hidden Symmetries Generate Rigid Folding Mechanisms in Periodic Origami
,”
Proc. Natl. Acad. Sci. U.S.A.
,
117
(
48
), pp.
30252
30259
.
58.
Zirbel
,
S. A.
,
Lang
,
R. J.
,
Thomson
,
M. W.
,
Sigel
,
D. A.
,
Walkemeyer
,
P. E.
,
Trease
,
B. P.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2013
, “
Accommodating Thickness in Origami-Based Deployable Arrays
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111005
.
59.
Edmondson
,
B. J.
,
Lang
,
R. J.
,
Morgan
,
M. R.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2015
, “Thick Rigidly Foldable Structures Realized by an Offset Panel Technique,”
Origami6
,
K.
Miura
,
T.
Kawasaki
,
T.
Tachi
,
R.
Uehara
,
R. J.
Lang
, and
P.
Wang-Iverson
, eds.,
American Mathematical Society
,
Providence, RI
, pp.
149
161
.
60.
Beatini
,
V.
, and
Korkmaz
,
K.
,
2013
, “
Shapes of Miura Mesh Mechanism With Mobility One
,”
Int. J. Space Struct.
,
28
(
2
), pp.
101
114
.
61.
Qiu
,
C.
,
Zhang
,
K.
, and
Dai
,
J. S.
,
2016
, “
Repelling-Screw Based Force Analysis of Origami Mechanisms
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031001
.
62.
Wang
,
K.
,
Dong
,
H.
,
Qiu
,
C.
,
Chen
,
I.-M.
, and
Dai
,
J. S.
,
2022
, “
Repelling-Screw-Based Geometrical Interpretation of Dualities of Compliant Mechanisms
,”
Mech. Mach. Theory
,
169
, p.
104636
.
63.
Zhang
,
J.
,
Karagiozova
,
D.
,
You
,
Z.
,
Chen
,
Y.
, and
Lu
,
G.
,
2019
, “
Quasi-Static Large Deformation Compressive Behaviour of Origami-Based Metamaterials
,”
Int. J. Mech. Sci.
,
153–154
, pp.
194
207
.
64.
Tolman
,
K. A.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2017
, “
Split-Vertex Technique for Thickness-Accommodation in Origami-Based Mechanisms
,”
ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Cleveland, OH
,
Aug. 6–9
.
You do not currently have access to this content.