Abstract

Product personalization will play a key role in the future of society by making these products available for everyone, everywhere. Personalized production requires the involvement of the customer in the design process. Thus, tools to identify which components and modules allow for customer interaction are needed, and to further assess the effects of customer interaction on the product design and the manufacturing system. In this article, we propose a framework to analyze the extent of personalization a designer and a manufacturing firm can achieve in the context of efficient personalized production. We study this as a dyad of product design and manufacturing system, which uses two main attributes: product modularity and manufacturing configuration complexity. To demonstrate our ideas, we use two applications. The first is a case study for gearbox, usually manufactured at high levels of efficiency under the mass production paradigm. The second case is an application for the footwear industry for the particular case of a sneaker, a sports shoe that is prone to be customized. These case studies show the flexibility of this framework to a wide set of industries. In both cases, we compare a personalization scenario with a baseline scenario and provide managerial insights.

References

1.
Hu
,
S. J.
,
2013
, “
Evolving Paradigms of Manufacturing: From Mass Production to Mass Customization and Personalization
,”
Procedia CIRP
,
Setúbal, Portugal
,
May 29–30
, Vol. 7, pp.
3
8
.
2.
Schuh
,
G.
,
Rudolf
,
S.
, and
Barg
,
S.
,
2015
, “
Implications of Integrating Additive Manufacturing Into Product-Production-Systems
,”
The International Society for Professional Innovation Management (ISPIM)
,
Brisbane, Australia
,
Dec. 6–9
.
3.
Huang
,
S.
,
Wang
,
G.
, and
Yan
,
Y.
,
2019
, “
Delayed Reconfigurable Manufacturing System
,”
Int. J. Prod. Res.
,
57
(
8
), pp.
2372
2391
.
4.
Koren
,
Y.
,
Gu
,
X.
, and
Guo
,
W.
,
2018
, “
Reconfigurable Manufacturing Systems: Principles, Design, and Future Trends
,”
Front. Mech. Eng.
,
13
(
2
), pp.
121
136
.
5.
Boehm
,
M.
, and
Thomas
,
O.
,
2013
, “
Looking Beyond the Rim of One’s Teacup: A Multidisciplinary Literature Review of Product-Service Systems in Information Systems, Business Management, and Engineering & Design
,”
J. Cleaner. Prod.
,
51
, pp.
245
260
.
6.
Ma
,
Y.
,
Du
,
G.
, and
Jiao
,
R. J.
,
2020
, “
Optimal Crowdsourcing Contracting for Reconfigurable Process Planning in Open Manufacturing: A Bilevel Coordinated Optimization Approach
,”
Int. J. Prod. Econ.
,
228
(
1
), p.
107884
.
7.
Landahl
,
J.
,
Jiao
,
R. J.
,
Madrid
,
J.
,
Söderberg
,
R.
, and
Johannesson
,
H.
,
2021
, “
Dynamic Platform Modeling for Concurrent Product-Production Reconfiguration
,”
Concurrent Eng.
,
29
(
2
), pp.
102
123
.
8.
Holt
,
R.
, and
Barnes
,
C.
,
2010
, “
Towards an Integrated Approach to ‘Design for X’: An Agenda for Decision-Based DFX Research
,”
Res. Eng. Des.
,
21
(
2
), pp.
123
136
.
9.
Keeney
,
R. L.
, and
Raiffa
,
H.
,
1993
,
Decisions With Multiple Objectives: Preferences and Value Trade-Offs
,
Cambridge University Press
,
Cambridge, UK
.
10.
Sosa
,
M. E.
,
Eppinger
,
S. D.
, and
Rowles
,
C. M.
,
2007
, “
A Network Approach to Define Modularity of Components in Complex Products
,”
ASME J. Mech. Des.
,
129
(
11
), p.
1118
.
11.
Mourtzis
,
D.
,
2016
, “
Challenges and Future Perspectives for the Life Cycle of Manufacturing Networks in the Mass Customisation Era
,”
Logistics Res.
,
9
(
1
), pp.
1
20
.
12.
Lampel
,
J.
, and
Mintzberg
,
H.
,
1996
, “
Customizing Customization
,”
Sloan Manage. Rev.
,
38
(
1
), pp.
21
30
.
13.
Rudberg
,
M.
, and
Wikner
,
J.
,
2004
, “
Mass Customization in Terms of the Customer Order Decoupling Point
,”
Prod. Plann. Control
,
15
(
4
), pp.
445
458
.
14.
Koren
,
Y.
,
Shpitalni
,
M.
,
Gu
,
P.
, and
Hu
,
S. J.
,
2015
, “
Product Design for Mass-Individualization
,”
Procedia CIRP
,
Haifa, Israel
,
Mar. 2–4
,
Vol. 36
, pp.
64
71
.
15.
Salado
,
A.
, and
Kannan
,
H.
,
2019
, “
Elemental Patterns of Verification Strategies
,”
Syst. Eng.
,
22
(
5
), pp.
370
388
.
16.
Blecker
,
T.
,
Abdelkafi
,
N.
,
Kaluza
,
B.
, and
Kreutler
,
G.
,
2004
, “
Mass Customization vs. Complexity: A Gordian Knot?
,”
2nd International Conference “An Enterprise Odyssey: Building Competitive Advantage,”
Zagreb, Croatia
,
June 17–19
, pp.
890
903
.
17.
Efthymiou
,
K.
,
Mourtzis
,
D.
,
Pagoropoulos
,
A.
,
Papakostas
,
N.
, and
Chryssolouris
,
G.
,
2016
, “
Manufacturing Systems Complexity Analysis Methods Review
,”
Int. J. Comput. Integr. Manuf.
,
29
(
9
), pp.
1025
1044
.
18.
Elmaraghy
,
W.
,
Elmaraghy
,
H.
,
Tomiyama
,
T.
, and
Monostori
,
L.
,
2012
, “
Complexity in Engineering Design and Manufacturing
,”
CIRP Annals - Manuf. Technol.
,
61
(
2
), pp.
793
814
.
19.
Ng
,
I.
,
Scharf
,
K.
,
Pogrebna
,
G.
, and
Maull
,
R.
,
2015
, “
Contextual Variety, Internet-of-Things and the Choice of Tailoring Over Platform: Mass Customisation Strategy in Supply Chain Management
,”
Int. J. Prod. Econ.
,
159
, pp.
76
87
.
20.
Yang
,
C.
,
Lan
,
S.
,
Shen
,
W.
,
Huang
,
G. Q.
,
Wang
,
X.
, and
Lin
,
T.
,
2017
, “
Towards Product Customization and Personalization in IoT-Enabled Cloud Manufacturing
,”
Cluster Comput.
,
20
(
2
), pp.
1717
1730
.
21.
Shang
,
X.
,
Liu
,
X.
,
Xiong
,
G.
,
Cheng
,
C.
,
Ma
,
Y.
, and
Nyberg
,
T. R.
,
2013
, “
Social Manufacturing Cloud Service Platform for the Mass Customization in Apparel Industry
,”
Proceedings of 2013 IEEE International Conference on Service Operations and Logistics, and Informatics
,
Dongguan, China
,
July 28–30
, pp.
220
224
.
22.
Xiuqing
,
S.
,
Baoli
,
S.
,
Liu
,
X.
,
Gang
,
X.
, and
Zengbo
,
Y.
,
2014
, “
Social Manufacture Cloud Mode in High-End Apparel, Footwear and Hats
,”
11th World Congress on Intelligent Control and Automation
,
Shenyang, China
,
June 29–July 4
, pp.
5264
5269
.
23.
Viswanathan
,
J.
,
Tilbury
,
D. M.
,
Hu
,
S. J.
, and
Mao
,
Z.
,
2012
, “
Cyberinfrastructure Enabling Personalized Production
,”
ASME/ISCIE 2012 International Symposium on Flexible Automation
,
St. Louis, MO
,
June 18–20
, pp.
1
8
.
24.
Monostori
,
L.
,
Kádár
,
B.
,
Bauernhansl
,
T.
,
Kondoh
,
S.
,
Kumara
,
S.
,
Reinhart
,
G.
,
Sauer
,
O.
,
Schuh
,
G.
,
Sihn
,
W.
, and
Ueda
,
K.
,
2016
, “
Cyber-Physical Systems in Manufacturing
,”
CIRP. Ann.
,
65
(
2
), pp.
621
641
.
25.
Qi
,
Q.
,
Pagani
,
L.
,
Scott
,
P. J.
, and
Jiang
,
X.
,
2018
, “
A Categorical Framework for Formalising Knowledge in Additive Manufacturing
,”
Procedia CIRP
,
75
, pp.
87
91
.
26.
Paynter
,
H. M.
,
1961
,
Analysis and Design of Engineering Systems
,
MIT Press
,
Cambridge, MA
.
27.
Sagawa
,
J. K.
, and
Mušíc
,
G.
,
2019
, “
Towards the Use of Bond Graphs for Manufacturing Control: Design of Controllers
,”
Int. J. Prod. Econ.
,
214
, pp.
53
72
.
28.
Hazelrigg
,
G. A.
,
1998
, “
A Framework for Decision-Based Engineering Design
,”
J. Mech. Des.
,
120
(
4
), p.
653
.
29.
Chen
,
W.
, and
Yuan
,
C.
,
1999
, “
A Probabilistic-Based Design Model for Achieving Flexibility in Design
,”
J. Mech. Des.
,
121
(
1
), pp.
77
83
.
30.
Hölttä-Otto
,
K.
,
2005
, “
Modular Product Platform Design
,” Ph.D. thesis,
Helsinki University of Technology
,
Espoo, Finland
.
31.
Hu
,
C.
,
Peng
,
Q.
, and
Gu
,
P.
,
2015
, “
Adaptable Interface Design for Open-Architecture Products
,”
Comput. Aided Des. Appl.
,
12
(
2
), pp.
156
165
.
32.
Ulrich
,
K.
,
1995
, “
The Role of Product Architecture in the Manufacturing Firm
,”
Res. Policy
,
24
(
3
), pp.
419
440
.
33.
Simpson
,
T. W.
,
2004
, “
Product Platform Design and Customization: Status and Promise
,”
Artif. Intell. Eng. Des., Anal. Manuf.
,
18
(
1
), pp.
3
20
.
34.
Suh
,
N. P.
,
1998
, “
Axiomatic Design Theory for Systems
,”
Res. Eng. Des.
,
10
(
4
), pp.
189
209
.
35.
Suh
,
N. P.
,
1999
, “
A Theory of Complexity, Periodicity and the Design Axioms
,”
Res. Eng. Des.
,
11
(
2
), pp.
116
132
.
36.
Baldwin
,
C. Y.
, and
Clark
,
K. B.
,
1999
,
Design Rules: The Power of Modularity
, Vol.
1
,
MIT Press
,
Cambridge, MA
.
37.
Jiao
,
J.
, and
Tseng
,
M. M.
,
2000
, “
Fundamentals of Product Family Architecture
,”
Integr. Manuf. Syst.
,
11
(
7
), pp.
469
483
.
38.
Sosa
,
M. E.
,
Eppinger
,
S. D.
, and
Rowles
,
C. M.
,
2004
, “
The Misalignment of Product Architecture and Organizational Structure in Complex Product Development
,”
Manage. Sci.
,
50
(
12
), pp.
1674
1689
.
39.
MacCormack
,
A.
,
Baldwin
,
C.
, and
Rusnak
,
J.
,
2012
, “
Exploring the Duality Between Product and Organizational Architectures: A Test of the ‘Mirroring’ Hypothesis
,”
Res. Policy
,
41
(
8
), pp.
1309
1324
.
40.
Pimmler
,
T. U.
and
Eppinger
,
S. D.
,
1994
, “
Integration Analysis of Product Decompositions
,”
ASME Conference on Design Theory and Methodology
,
Minneapolis, MN
,
Sept. 11–14
, pp.
343
351
.
41.
Hölttä-Otto
,
K.
,
Chiriac
,
N. A.
,
Lysy
,
D.
, and
Suk Suh
,
E.
,
2012
, “
Comparative Analysis of Coupling Modularity Metrics
,”
J. Eng. Des.
,
23
(
10–11
), pp.
787
803
.
42.
Jung
,
S.
, and
Simpson
,
T. W.
,
2017
, “
New Modularity Indices for Modularity Assessment and Clustering of Product Architecture
,”
J. Eng. Des.
,
28
(
1
), pp.
1
22
.
43.
Deshmukh
,
A. V.
,
Talavage
,
J. J.
, and
Barash
,
M. M.
,
1998
, “
Complexity in Manufacturing Systems, Part 1: Analysis of Static Complexity
,”
IIE Trans. (Institute of Industrial Engineers)
,
30
(
7
), pp.
645
655
.
44.
Frizelle
,
G.
, and
Suhov
,
Y.
,
2008
, “
The Measurement of Complexity in Production and Other Commercial Systems
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
464
(
2098
), pp.
2649
2668
.
45.
Zhang
,
T.
, and
Efstathiou
,
J.
,
2006
, “
The Complexity of Mass Customization Systems Under Different Inventory Strategies
,”
Int. J. Comput. Integr. Manuf.
,
19
(
5
), pp.
423
433
.
46.
ElMaraghy
,
H. A.
,
2006
, “
A Complexity Code for Manufacturing Systems
,”
Proceedings of the ASME 2006 International Manufacturing Science and Engineering Conference. Manufacturing Science and Engineering, Parts A and B
,
Ypsilanti, MI
,
Oct. 8–11
, pp.
625
634
.
47.
EIMaraghy
,
W.
, and
Urbanic
,
R.
,
2007
, “
Assessment of Manufacturing Operational Complexity
,”
CIRP. Ann.
,
53
(
1
), pp.
401
406
.
48.
Sivadasan
,
S.
,
Efstathiou
,
J.
,
Frizelle
,
G.
,
Shirazi
,
R.
, and
Calinescu
,
A.
,
2002
, “
An Information-Theoretic Methodology for Measuring the Operational Complexity of Supplier-Customer Systems
,”
Int. J. Oper. Prod. Manage.
,
22
(
1
), pp.
80
102
.
49.
Guoliang
,
F.
,
Aiping
,
L.
,
Giovanni
,
M.
,
Liyun
,
X.
, and
Xuemei
,
L.
,
2017
, “
Operation-Based Configuration Complexity Measurement for Manufacturing System
,”
Procedia CIRP
,
63
, pp.
645
650
.
50.
Zhu
,
J.
, and
Deshmukh
,
A.
,
2003
, “
Application of Bayesian Decision Networks to Life Cycle Engineering in Green Design and Manufacturing
,”
Eng. Appl. Artif. Intell.
,
16
(
2
), pp.
91
103
.
51.
McNaught
,
K.
, and
Chan
,
A.
,
2011
, “
Bayesian Networks in Manufacturing
,”
J. Manuf. Technol. Manage.
,
22
(
6
), pp.
734
747
.
52.
Correa
,
M.
,
Bielza
,
C.
, and
Pamies-Teixeira
,
J.
,
2009
, “
Comparison of Bayesian Networks and Artificial Neural Networks for Quality Detection in a Machining Process
,”
Expert. Syst. Appl.
,
36
(
3, Part 2
), pp.
7270
7279
.
53.
Bouissou
,
M.
, and
Pourret
,
O.
,
2003
, “
A Bayesian Belief Network Based Method for Performance Evaluation and Troubleshooting of Multistate Systems
,”
Int. J. Reliab., Qual. Saf. Eng.
,
10
(
4
), pp.
407
416
.
54.
Chin
,
K. S.
,
Tang
,
D. W.
,
Yang
,
J. B.
,
Wong
,
S. Y.
, and
Wang
,
H.
,
2009
, “
Assessing New Product Development Project Risk by Bayesian Network With a Systematic Probability Generation Methodology
,”
Expert. Syst. Appl.
,
36
(
6
), pp.
9879
9890
.
55.
Wang
,
Y.
, and
Tseng
,
M. M.
,
2008
, “
Defining Specifications for Custom Products: A Bayesian Probabilistic Approach
,”
ASME 2008 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2008
,
Brooklyn, NY
,
Aug. 3–6
, pp.
87
95
.
56.
Blecker
,
T.
, and
Abdelkafi
,
N.
,
2006
, “
Complexity and Variety in Mass Customization Systems: Analysis and Recommendations
,”
Manage. Decis.
,
44
(
7
), pp.
908
929
.
57.
Mikkola
,
J. H.
, and
Skjøtt-Larsen
,
T.
,
2004
, “
Supply-Chain Integration: Implications for Mass Customization, Modularization and Postponement Strategies
,”
Prod. Plann. Control
,
15
(
4
), pp.
352
361
.
58.
ElMaraghy
,
H.
,
Schuh
,
G.
,
ElMaraghy
,
W.
,
Piller
,
F.
,
Schönsleben
,
P.
,
Tseng
,
M.
, and
Bernard
,
A.
,
2013
, “
Product Variety Management
,”
CIRP. Ann.
,
62
(
2
), pp.
629
652
.
59.
Yang
,
B.
,
Burns
,
N. D.
, and
Backhouse
,
C. J.
,
2004
, “
Postponement: A Review and an Integrated Framework
,”
Int. J. Oper. Prod. Manage.
,
24
(
5
), pp.
468
487
.
60.
Koomsap
,
P.
,
2013
, “
Design by Customer: Concept and Applications
,”
J. Intell. Manuf.
,
24
(
2
), pp.
295
311
.
61.
Rincon-Guevara
,
O.
,
Samayoa
,
J.
, and
Deshmukh
,
A.
,
2020
, “
Product Design and Manufacturing System Operations: An Integrated Approach for Product Customization
,”
48th SME North American Manufacturing Research Conference
, pp.
54
63
.
62.
Jiao
,
J.
, and
Tseng
,
M. M.
,
2004
, “
Customizability Analysis in Design for Mass Customization
,”
CAD Comput. Aided Des.
,
36
(
8
), pp.
745
757
.
63.
Ma
,
H.
,
Peng
,
Q.
,
Zhang
,
J.
, and
Gu
,
P.
,
2018
, “
Assembly Sequence Planning for Open-Architecture Products
,”
Int. J. Adv. Manuf. Technol.
,
94
(
5–8
), pp.
1551
1564
.
64.
Mitsubishi
Materials
,
2021
, “Technical Information/Cutting Formula,” http://www.mitsubishicarbide.com/en/, Accessed August 2021.
65.
Shoe Guide, “
Anatomy of the Shoe
,” https://www.shoeguide.org, Accessed September 5, 2021.
66.
Paiva
,
R. M.
,
Marques
,
E. A.
,
da Silva
,
L. F.
,
António
,
C. A.
, and
Arán-Ais
,
F.
,
2016
, “
Adhesives in the Footwear Industry
,”
Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl.
,
230
(
2
), pp.
357
374
.
67.
Lewis
,
K.
,
2012
, “
Making Sense of Elegant Complexity in Design
,”
ASME J. Mech. Des.
,
134
(
12
), p.
120801
.
You do not currently have access to this content.