Abstract

Additive manufacturing (AM) processes offer unique capabilities (i.e., opportunities) yet inherent limitations (i.e., restrictions) due to the layer-by-layer fabrication of parts. Despite the newfound design freedom and increased use of AM, limited research has investigated how knowledge of the AM processes affects the creativity of students’ ideas after being exposed to AM. This study investigates this gap through an experimental study with 343 participants recruited from a junior-level mechanical engineering design course. The participants were exposed to three variations in design for additive manufacturing (DfAM) education: (1) no DfAM, (2) restrictive DfAM, and (3) opportunistic and restrictive (dual) DfAM education. The effects of these three interventions were measured through differences in (1) participants’ self-reported use of DfAM in a design challenge and (2) expert assessment of the creativity of the outcomes from the said design challenge. The results of the study indicated that variations in DfAM content did not result in differences in the participants’ self-reported use of either opportunistic or restrictive DfAM, with all three groups reporting similar levels of emphasis. Further, participants from all three groups reported higher use of restrictive DfAM techniques, compared with opportunistic DfAM. Moreover, while variations in the content had no effect on the creativity (uniqueness and usefulness) of the participants’ design outcomes, teaching both opportunistic and restrictive DfAM did result in the generation of designs with greater AM technical goodness—a novel and significant finding in our study. The results of this study highlight the need for DfAM educational interventions that encourage students to not only learn about but also integrate both opportunistic and restrictive concepts effectively into their creative design process. This would result in the generation of innovative products that leverage the design freedom enabled by AM, yet addressing the limitations inherent in the process.

References

1.
Sinha
,
S.
,
Chen
,
H.
,
Meisel
,
N. A.
, and
Miller
,
S. R.
,
2017
, “
Does Designing for Additive Manufacturing Help Us Be More Creative? An Exploration in Engineering Design Education
,”
Proceedings of the ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, pp.
1
12
.
2.
Glass
,
R. L.
,
Hague
,
R.
,
Campbell
,
I.
, and
Dickens
,
P.
,
2003
, “
Implications on Design of Rapid Manufacturing
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
217
(
1
), pp.
25
30
.
3.
Vayre
,
B.
,
Vignat
,
F.
, and
Villeneuve
,
F.
,
2012
, “
Designing for Additive Manufacturing
,”
Procedia CIRP
,
3
(
1
), pp.
632
637
. 10.1016/j.procir.2012.07.108
4.
Laverne
,
F.
,
Segonds
,
F.
,
Anwer
,
N.
, and
Le Coq
,
M.
,
2015
, “
Assembly Based Methods to Support Product Innovation in Design for Additive Manufacturing: An Exploratory Case Study
,”
ASME J. Mech. Des.
,
137
(
12
), p.
121701
. 10.1115/1.4031589
5.
Hu
,
K.
,
Jin
,
S.
, and
Wang
,
C. C. L.
,
2015
, “
Support Slimming for Single Material Based Additive Manufacturing
,”
CAD Comput. Aided Des.
,
65
, pp.
1
10
. 10.1016/j.cad.2015.03.001
6.
Strano
,
G.
,
Hao
,
L.
,
Everson
,
R. M.
, and
Evans
,
K. E.
,
2013
, “
A New Approach to the Design and Optimisation of Support Structures in Additive Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
66
(
9–12
), pp.
1247
1254
. 10.1007/s00170-012-4403-x
7.
Kirschman
,
C.
,
Jara-Almonte
,
C.
,
Bagchi
,
A.
,
Dooley
,
R.
, and
Ogale
,
A.
,
1991
, “
Computer Aided Design of Support Structures for Stereolithographic Components
,”
Proceedings of the 1991 ASME Computers in Engineering Conference
,
Santa Clara, CA
,
August
, Vol.
91
, pp.
443
448
.
8.
Das
,
P.
,
Chandran
,
R.
,
Samant
,
R.
, and
Anand
,
S.
,
2015
, “
Optimum Part Build Orientation in Additive Manufacturing for Minimizing Part Errors and Support Structures
,”
43rd Proceedings of the North American Manufacturing Research Institution of SME
,
Charlotte, NC
,
June 8–12
, pp.
309
330
.
9.
Zhu
,
Z.
,
Dhokia
,
V.
,
Nassehi
,
A.
, and
Newman
,
S. T.
,
2016
, “
Investigation of Part Distortions as a Result of Hybrid Manufacturing
,”
Rob. Comput. Integr. Manuf.
,
37
, pp.
23
32
. 10.1016/j.rcim.2015.06.001
10.
Nickel
,
A. H.
,
Barnett
,
D. M.
, and
Prinz
,
F. B.
,
2001
, “
Thermal Stresses and Deposition Patterns in Layered Manufacturing
,”
Mater. Sci. Eng. A
,
317
(
1–2
), pp.
59
64
. 10.1016/S0921-5093(01)01179-0
11.
Li
,
C.
,
Fu
,
C. H.
,
Guo
,
Y. B.
, and
Fang
,
F. Z.
,
2015
, “
A Multiscale Modeling Approach for Fast Prediction of Part Distortion in Selective Laser Melting
,”
J. Mater. Process. Technol.
,
229
, pp.
703
712
. 10.1016/j.jmatprotec.2015.10.022
12.
Turnbull
,
A.
,
Maxwell
,
A. S.
, and
Pillai
,
S.
,
1999
, “
Residual Stress in Polymers—Evaluation of Measurement Techniques
,”
J. Mater. Sci.
,
34
(
3
), pp.
451
459
. 10.1023/A:1004574024319
13.
Carroll
,
B. E.
,
Palmer
,
T. A.
, and
Beese
,
A. M.
,
2015
, “
Anisotropic Tensile Behavior of Ti-6Al-4V Components Fabricated with Directed Energy Deposition Additive Manufacturing
,”
Acta Mater.
,
87
, pp.
309
320
. 10.1016/j.actamat.2014.12.054
14.
Ahn
,
S.
,
Montero
,
M.
,
Odell
,
D.
,
Roundy
,
S.
, and
Wright
,
P. K.
,
2002
, “
Anisotropic Material Properties of Fused Deposition Modeling ABS
,”
Rapid Prototyp. J.
,
8
(
4
), pp.
248
257
. 10.1108/13552540210441166
15.
Bellini
,
A.
,
Huang
,
A.
, and
Güçeri
,
Selçuk
,
2003
, “
Mechanical Characterization of Parts Fabricated Using Fused Deposition Modeling
,”
Rapid Prototyp. J.
,
19
(
4
), pp.
252
264
. https://doi.org/10.1108/13552540310489631
16.
Boschetto
,
A.
, and
Bottini
,
L.
,
2016
, “
Design for Manufacturing of Surfaces to Improve Accuracy in Fused Deposition Modeling
,”
Rob. Comput. Integr. Manuf.
,
37
, pp.
103
114
. 10.1016/j.rcim.2015.07.005
17.
Boschetto
,
A.
,
Bottini
,
L.
, and
Veniali
,
F.
,
2016
, “
Finishing of Fused Deposition Modeling Parts by CNC Machining
,”
Rob. Comput. Integr. Manuf.
,
41
, pp.
92
101
. 10.1016/j.rcim.2016.03.004
18.
Campbell
,
R. I.
,
Martorelli
,
M.
, and
Lee
,
H. S.
,
2002
, “
Surface Roughness Visualisation for Rapid Prototyping Models R.I
,”
Comput.-Aided Des.
,
34
(
10
), pp.
717
725
. 10.1016/S0010-4485(01)00201-9
19.
Delfs
,
P.
,
T¨ows
,
M.
, and
Schmid
,
H. -J.
,
2016
, “
Optimized Build Orientation of Additive Manufactured Parts for Improved Surface Quality and Build Time
,”
Addit. Manuf.
,
12
, pp.
314
320
. 10.1016/j.addma.2016.06.003
20.
Nuñez
,
P. J.
,
Rivas
,
A.
,
García-Plaza
,
E.
,
Beamud
,
E.
, and
Sanz-Lobera
,
A.
,
2015
, “
Dimensional and Surface Texture Characterization in Fused Deposition Modelling (FDM) With ABS Plus
,”
Procedia Eng.
,
132
, pp.
856
863
. 10.1016/j.proeng.2015.12.570
21.
Pandey
,
P. M.
,
Reddy
,
N. V.
, and
Dhande
,
S. G.
,
2003
, “
Improvement of Surface Finish by Staircase Machining in Fused Deposition Modeling
,”
J. Mater. Process. Technol.
,
132
(
1–3
), pp.
323
331
. 10.1016/S0924-0136(02)00953-6
22.
Armillotta
,
A.
,
2006
, “
Assessment of Surface Quality on Textured FDM Prototypes
,”
Rapid Prototyp. J.
,
12
(
1
), pp.
35
41
. 10.1108/13552540610637255
23.
Fahad
,
M.
, and
Hopkinson
,
N.
,
2012
, “
A New Benchmarking Part for Evaluating the Accuracy and Repeatability of Additive Manufacturing (AM) Processes
,”
2nd International Conference on Mechanical, Production, and Automobile Engineering
,
Singapore
,
Apr. 28–29
, pp.
234
238
.
24.
Moylan
,
S.
,
Slowinski
,
J.
,
Cooke
,
A.
,
Jurrens
,
K.
, and
Donmez
,
M. A.
,
2012
, “
Proposal for a Standardized Test Artifact for Additive
,”
Proceedings of the 23th International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 6–8
, pp.
902
920
.
25.
Umaras
,
E.
, and
Tsuzuki
,
M. S. G.
,
2017
, “
Additive Manufacturing—Considerations on Geometric Accuracy and Factors of Influence
,”
IFAC-PapersOnLine
,
50
(
1
), pp.
14940
14945
. 10.1016/j.ifacol.2017.08.2545
26.
Childs
,
T. H. C.
, and
Juster
,
N. P.
,
1994
, “
Linear and Geometric Accuracies From Layer Manufacturing
,”
Ann. ClRP
,
43
(
2
), pp.
163
166
. 10.1016/S0007-8506(07)62187-8
27.
Simpson
,
T. W.
,
Williams
,
C. B.
, and
Hripko
,
M.
,
2017
, “
Preparing Industry for Additive Manufacturing and Its Applications: Summary & Recommendations From a National Science Foundation Workshop
,”
Addit. Manuf.
,
13
, pp.
166
178
. 10.1016/j.addma.2016.08.002
28.
Rosen
,
D. W.
,
2007
, “
Computer-Aided Design for Additive Manufacturing of Cellular Structures
,”
Comput.-Aided Des. Applic.
,
4
(
1–6
), pp.
585
594
. 10.1080/16864360.2007.10738493
29.
Chu
,
C.
,
Graf
,
G.
, and
Rosen
,
D. W.
,
2008
, “
Design for Additive Manufacturing of Cellular Structures
,”
Comput.-Aided Des. Applic.
,
5
(
5
), pp.
686
696
. 10.3722/cadaps.2008.686-696
30.
Murr
,
L. E.
,
Gaytan
,
S. M.
,
Medina
,
F.
,
Lopez
,
H.
,
Martinez
,
E.
,
Machado
,
B. I.
,
Hernandez
,
D. H.
,
Martinez
,
L.
,
Lopez
,
M. I.
,
Wicker
,
R. B.
, and
Bracke
,
J.
,
2010
, “
Next-Generation Biomedical Implants Using Additive Manufacturing of Complex, Cellular and Functional Mesh Arrays
,”
Philos. Trans. R. Soc. London, Ser. A
,
368
(
1917
), pp.
1999
2032
. 10.1098/rsta.2010.0010
31.
Kaweesa
,
D. V.
,
Spillane
,
D. R.
, and
Meisel
,
N. A.
,
2017
, “
Investigating the Impact of Functionally Graded Materials on Fatigue Life of Material Jetted Specimens
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 7–9
, pp.
578
592
.
32.
Garland
,
A.
, and
Fadel
,
G.
,
2015
, “
Design and Manufacturing Functionally Gradient Material Objects With an Off the Shelf Three-Dimensional Printer: Challenges and Solutions
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111407
. 10.1115/1.4031097
33.
Meisel
,
N.
, and
Williams
,
C.
,
2015
, “
An Investigation of Key Design for Additive Manufacturing Constraints in Multimaterial Three-Dimensional Printing
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111406
. 10.1115/1.4030991
34.
Doubrovski
,
E. L.
,
Tsai
,
E. Y.
,
Dikovsky
,
D.
,
Geraedts
,
J. M. P.
,
Herr
,
H.
, and
Oxman
,
N.
,
2015
, “
Voxel-Based Fabrication Through Material Property Mapping: A Design Method for Bitmap Printing
,”
CAD Comput. Aided Des.
,
60
, pp.
3
13
. 10.1016/j.cad.2014.05.010
35.
Calì
,
J.
,
Calian
,
D. A.
,
Amati
,
C.
,
Kleinberger
,
R.
,
Steed
,
A.
,
Kautz
,
J.
, and
Weyrich
,
T.
,
2012
, “
3D-Printing of Non-Assembly, Articulated Models
,”
ACM Trans. Graph.
,
31
(
6
), p.
1
. 10.1145/2366145.2366149
36.
Schmelzle
,
J.
,
Kline
,
E. V.
,
Dickman
,
C. J.
,
Reutzel
,
E. W.
,
Jones
,
G.
, and
Simpson
,
T. W.
,
2015
, “
(Re)Designing for Part Consolidation: Understanding the Challenges of Metal Additive Manufacturing
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111404
. 10.1115/1.4031156
37.
Hopkinson
,
N.
, and
Dickens
,
P.
,
2003
, “
Analysis of Rapid Manufacturing—Using Layer Manufacturing Processes for Production
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
217
(
1
), pp.
31
40
. 10.1243/095440603762554596
38.
Pallari
,
J. H. P.
,
Dalgarno
,
K. W.
, and
Woodburn
,
J.
,
2010
, “
Mass Customization of Foot Orthoses for Rheumatoid Arthritis Using Selective Laser Sintering
,”
IEEE Trans. Biomed. Eng.
,
57
(
7
), pp.
1750
1756
. 10.1109/TBME.2010.2044178
39.
Tuck
,
C. J.
,
Hague
,
R. J. M.
,
Ruffo
,
M.
,
Ransley
,
M.
, and
Adams
,
P.
,
2008
, “
Rapid Manufacturing Facilitated Customization
,”
Int. J. Computer Integr. Manuf.
,
21
(
3
), pp.
245
258
. 10.1080/09511920701216238
40.
Mohammed
,
M. I.
,
Fitzpatrick
,
A. P.
, and
Gibson
,
I.
,
2017
, “
Customised Design of a Patient Specific 3D Printed Whole Mandible Implant
,”
KnE Eng.
,
2
(
2
), p.
104
. 10.18502/keg.v2i2.602
41.
De Laurentis
,
K. J.
,
Kong
,
F. F.
, and
Mavroidis
,
C.
,
2002
, “
Procedure for Rapid Fabrication of Non-Assembly Mechanisms with Embedded Components
,”
Proceedings of the 2002 ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Montreal, Canada
,
Sept. 29–Oct. 2
, pp.
1
7
.
42.
Aguilera
,
E.
,
Ramos
,
J.
,
Espalin
,
D.
,
Cedillos
,
F.
,
Muse
,
D.
,
Wicker
,
R.
, and
Macdonald
,
E.
,
2013
, “
3D Printing of Electro Mechanical Systems
,”
International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 12–14
, pp.
950
961
.
43.
Lopes
,
A. J.
,
MacDonald
,
E.
, and
Wicker
,
R. B.
,
2012
, “
Integrating Stereolithography and Direct Print Technologies for 3D Structural Electronics Fabrication
,”
Rapid Prototyp. J.
,
18
(
2
), pp.
129
143
. 10.1108/13552541211212113
44.
Wicker
,
R. B.
, and
MacDonald
,
E. W.
,
2012
, “
Multi-Material, Multi-Technology Stereolithography: This Feature Article Covers a Decade of Research Into Tackling One of the Major Challenges of the Stereolithography Technique, Which Is Including Multiple Materials in One Construct
,”
Virtual Phys. Prototyp.
,
7
(
3
), pp.
181
194
. 10.1080/17452759.2012.721119
45.
Bourell
,
D. L.
,
Leu
,
M. C.
, and
Rosen
,
D. W.
,
2009
,
Identifying the Future of Freeform Processing
,
The University of Texas at Austin
,
Austin, TX
.
46.
Huang
,
Y.
, and
Ming
,
C. L.
,
2014
,
Frontiers of Additive Manufacturing Research and Education: Report of NSF Additive Manufacturing Workshop
,
Center for Manufacturing Innovation, University of Florida
.
47.
Thomas-Seale
,
L. E. J.
,
Kirkman-Brown
,
J. C.
,
Attallah
,
M. M.
,
Espino
,
D. M.
, and
Shepherd
,
D. E. T.
,
2018
, “
The Barriers to the Progression of Additive Manufacture: Perspectives From UK Industry
,”
Int. J. Prod. Econ.
,
198
, pp.
104
118
. 10.1016/j.ijpe.2018.02.003
48.
Williams
,
C. B.
, and
Seepersad
,
C. C.
,
2012
, “
Design for Additive Manufacturing Curriculum: A Problem-and Project-Based Approach
,”
International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 6–8
, pp.
81
92
.
49.
Williams
,
C. B.
,
Sturm
,
L.
, and
Wicks
,
A.
,
2015
, “
Advancing Student Learning Of Design for Additive Manufacturing Principles Through An Extracurricular Vehicle Design Competition
,”
Proceedings of the ASME 2015 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 2–5
, pp.
1
8
.
50.
Meisel
,
N. A.
, and
Williams
,
C. B.
,
2015
, “
Design and Assessment of a 3D Printing Vending Machine
,”
Rapid Prototyp. J.
,
21
(
5
), pp.
471
481
. 10.1108/RPJ-07-2014-0081
51.
Sinha
,
S.
,
Rieger
,
K.
,
Knochel
,
A. D.
, and
Meisel
,
N. A.
,
2017
, “
Design and Preliminary Evaluation of a Deployable Mobile Makerspace for Informal Additive Manufacturing Education
,” pp.
2801
2815
.
52.
Lippert
,
B.
,
Leuteritz
,
G.
, and
Lachmayer
,
R.
,
2017
, “
An Approach to Implement Design for Additive Manufacturing in Engineering Studies
,”
Proceedings of the International Conference on Engineering Design, ICED
,
5
(
DS87-5
), pp.
51
60
.
53.
Yang
,
L.
,
2018
, “
Education of Additive Manufacturing—An Attempt to Inspire Research
,”
Solid Freeform Fabrication 2018: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference
, pp.
44
54
.
54.
Floriane
,
L.
,
Frédéric
,
S.
,
Gianluca
,
D. A.
, and
Marc
,
L. C.
,
2017
, “
Enriching Design With X Through Tailored Additive Manufacturing Knowledge: A Methodological Proposal
,”
Int. J. Interact. Des. Manuf.
,
11
(
2
), pp.
279
288
. 10.1007/s12008-016-0314-7
55.
Brands
,
R. F.
, and
Kleinman
,
M. J.
,
2010
,
Robert’s Rules of Innovation : A 10-Step Program for Corporate Survival
,
John Wiley & Sons
,
Hoboken, NJ
.
56.
Anderson
,
N.
,
Potočnik
,
K.
, and
Zhou
,
J.
,
2014
, “
Innovation and Creativity in Organizations
,”
J. Manage.
,
40
(
5
), pp.
1297
1333
. 10.1177/0149206314527128
57.
Besemer
,
S. P.
,
1998
, “
Creative Product Analysis Matrix: Testing the Model Structure and a Comparison Among Products-Three Novel Chairs
,”
Creat. Res. J.
,
11
(
4
), pp.
333
346
. 10.1207/s15326934crj1104_7
58.
Amabile
,
T. M.
,
1996
,
Creativity in Context: Update to the Social Psychology of Creativity
,
Westview Press
,
New York
.
59.
Wallas
,
G.
,
1926
,
The Art of Thought
,
Solis Press
,
Kent, England
.
60.
Simon
,
H. A.
, and
Newell
,
A.
,
1971
, “
Human Problem Solving: The State of the Theory in 1970
,”
Am. Psychol.
,
26
(
2
), pp.
145
159
. 10.1037/h0030806
61.
Booth
,
J. W.
,
Alperovich
,
J.
,
Chawla
,
P.
,
Ma
,
J.
,
Reid
,
T. N.
, and
Ramani
,
K.
,
2017
, “
The Design for Additive Manufacturing Worksheet
,”
ASME J. Mech. Des.
,
139
(
10
), p.
100904
. 10.1115/1.4037251
62.
Boothroyd
,
G.
,
1994
, “
Product Design for Manufacture and Assembly
,”
Comput.-Aided Des.
,
26
(
7
), pp.
505
520
. 10.1016/0010-4485(94)90082-5
63.
Printing Guidelines and Best Practices
, https://makercommons.psu.edu/2016/08/24/printing-guidelines-and-best-practices/, Accessed January 25, 2020.
64.
Kuhn
,
J.
,
Green
,
M.
,
Bashyam
,
S.
, and
Seepersad
,
C. C.
,
2014
, “
The Innovation Station: A 3D Printing Vending Machine for UT Austin Students
,”
25th Annual International Solid Freeform Fabrication Sumposium
,
Austin, TX
,
4-6 August, 2014
.
65.
Muller
,
F. H.
, and
Louw
,
J.
,
2004
, “
Learning Environment, Motivation and Interest: Perspectives on Self-Determination Theory
,”
English
,
34
(
2
), pp.
169
191
.
66.
Glück
,
J.
,
Ernst
,
R.
, and
Unger
,
F.
,
2002
, “
How Creatives Define Creativity: Definitions Reflect Different Types of Creativity
,”
Creat. Res. J.
,
14
(
1
), pp.
55
67
. 10.1207/S15326934CRJ1401_5
67.
Prabhu
,
R.
,
Miller
,
S. R.
,
Simpson
,
T. W.
, and
Meisel
,
N. A.
,
2018
, “
The Earlier the Better? Investigating the Importance of Timing on Effectiveness of Design for Additive Manufacturing Education
,”
Proceedings of the ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Canada
,
Aug. 26–28
, pp.
1
14
.
68.
Prabhu
,
R.
,
Miller
,
S. R.
,
Simpson
,
T. W.
, and
Meisel
,
N. A.
,
2018
, “
Teaching Design Freedom: Exploring the Effects of Design for Additive Manufacturing Education on the Cognitive Components of Students’ Creativity
,”
Proceedings of the ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Canada
,
Aug. 26–29
, pp.
1
14
.
69.
Prabhu
,
R.
,
Miller
,
S. R.
,
Simpson
,
T. W.
, and
Meisel
,
N. A.
,
2019
, “
Exploring the Effects of Additive Manufacturing Education on Students’ Engineering Design Process and Its Outcomes
,”
ASME J. Mech. Des.
,
142
(
4
), p.
042001
. 10.1115/1.4044324
70.
Campbell
,
D. T.
, and
Fiske
,
D. W.
,
1959
, “
Convergent and Discriminant Validation by the Multitrait-Multimethod Matrix
,”
Psychol. Bull.
,
56
(
2
), pp.
81
105
. 10.1037/h0046016
71.
Kaufman
,
J. C.
,
Baer
,
J.
, and
Cole
,
J. C.
,
2009
, “
Expertise, Domains, and the Consensual Assessment Technique
,”
J. Creat. Behav.
,
43
(
4
), pp.
223
233
. 10.1002/j.2162-6057.2009.tb01316.x
72.
Baer
,
J.
,
2010
, “Is Creativity Domain Specific?”
The Cambridge Handbook of Creativity
,
J. C.
Kaufman
, and
R. J.
Sternberg
, eds.,
Cambridge University Press
,
Cambridge
, pp.
321
341
.
73.
Baer
,
J.
,
1998
, “
The Case for Domain Specificity of Creativity
,”
Creat. Res. J.
,
11
(
2
), pp.
173
177
. 10.1207/s15326934crj1102_7
74.
Hennessey
,
B. A.
,
Amabile
,
T. M.
, and
Mueller
,
J. S.
,
2011
, “Consensual Assessment,”
Encyclopedia of Creativity
,
M. A.
Runco
, and
S. R.
Pritzker
, eds.,
Academic Press
,
London
, pp.
253
260
.
75.
Baer
,
J.
, and
McKool
,
S. S.
,
2016
, “Assessing Creativity Using the Consensual Assessment Technique,”
Handbook of Research on Assessment Technologies, Methods, and Applications in Higher Education
,
C. S.
Schreiner
, ed.,
Information Science Reference
,
Hershey, PA
, pp.
65
77
.
76.
Hekkert
,
P.
, and
Van Wieringen
,
P. C. W.
,
1996
, “
Beauty in the Eye of Expert and Nonexpert Beholders: A Study in the Appraisal of Art
,”
Am. J. Psychol.
,
109
(
3
), pp.
389
407
. 10.2307/1423013
77.
Saal
,
F. E.
,
Downey
,
R. G.
, and
Lahey
,
M. A.
,
1980
, “
Rating the Ratings: Assessing the Psychometric Quality of Rating Data
,”
Psychol. Bull.
,
88
(
2
), pp.
413
428
. 10.1037/0033-2909.88.2.413
78.
Kaufman
,
J. C.
,
Baer
,
J.
,
Cole
,
J. C.
, and
Sexton
,
J. D.
,
2008
, “
A Comparison of Expert and Nonexpert Raters Using the Consensual Assessment Technique
,”
Creat. Res. J.
,
20
(
2
), pp.
171
178
. 10.1080/10400410802059929
79.
Kaufman
,
J. C.
,
Baer
,
J.
,
Cropley
,
D. H.
,
Reiter-Palmon
,
R.
, and
Sinnett
,
S.
,
2013
, “
Furious Activity vs. Understanding: How Much Expertise Is Needed to Evaluate Creative Work?
,”
Psychol. Aesthet. Creat. Arts
,
7
(
4
), pp.
332
340
. 10.1037/a0034809
80.
Hennessey
,
B. A.
,
1994
, “
The Consensual Assessment Technique—An Examination of the Relationship Between Ratings of Product and Process Creativity
,”
Creat. Res. J.
,
7
(
2
), pp.
193
208
. 10.1080/10400419409534524
81.
Hickey
,
M.
,
2001
, “
An Application of Amabile’s Consensual Assessment Technique for Rating the Creativity of Children’s Musical Compositions
,”
J. Res. Music Educ.
,
49
(
3
), pp.
234
244
. 10.2307/3345709
82.
Chen
,
C.
,
Kasof
,
J.
,
Himsel
,
A. J.
,
Greenberger
,
E.
,
Dong
,
Q.
, and
Xue
,
G.
,
2002
, “
Creativity in Drawings of Geometric Shapes: A Cross-Cultural Examination with the Consensual Assessment Technique
,”
J. Cross Cult. Psychol.
,
33
(
2
), pp.
171
187
. 10.1177/0022022102033002004
83.
Shah
,
J.
,
Vargas-Hernandez
,
N.
, and
Smith
,
S. M.
,
2003
, “
Metrics for Measuring Ideation Effectiveness
,”
Des. Stud.
,
24
(
2
), pp.
111
134
. 10.1016/S0142-694X(02)00034-0
84.
Nelson
,
B. A.
,
Wilson
,
J. O.
,
Rosen
,
D.
, and
Yen
,
J.
,
2009
, “
Refined Metrics for Measuring Ideation Effectiveness
,”
Des. Stud.
,
30
(
6
), pp.
737
743
. 10.1016/j.destud.2009.07.002
85.
Johnson
,
T. A.
,
Caldwell
,
B. W.
,
Cheeley
,
A.
, and
Green
,
M. G.
,
2016
, “
Comparison and Extension of Novelty Metrics for Problem-Solving Tasks
,”
Proceedings of the ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
,
Aug. 21–24
, pp.
1
12
.
86.
Kaufman
,
J. C.
, and
Baer
,
J.
,
2012
, “
Beyond New and Appropriate: Who Decides What Is Creative?
,”
Creat. Res. J.
,
24
(
1
), pp.
83
91
. 10.1080/10400419.2012.649237
87.
Cronbach
,
L. J.
,
1951
, “
Coefficient Alpha and the Internal Structure of Tests
,”
Psychometrika
,
16
(
3
), pp.
297
334
. 10.1007/BF02310555
88.
Besemer
,
S. P.
, and
O’Quin
,
K.
,
1999
, “
Confirming the Three-Factor Creative Product Analysis Matrix Model in an American Sample
,”
Creat. Res. J.
,
12
(
4
), pp.
329
337
. 10.1207/s15326934crj1204_6
89.
Bray
,
J. H.
, and
Maxwell
,
S. E.
,
1985
,
Multivariate Analysis of Variance
,
Sage
,
Newbury Park, CA
.
90.
Shapiro
,
A. S. S.
, and
Wilk
,
M. B.
,
1965
, “
An Analysis of Variance Test for Normality (Complete Samples)
,”
Biometrika
,
52
(
3
), pp.
591
611
. 10.1093/biomet/52.3-4.591
91.
Maxwell
,
S. E.
, and
Delaney
,
H. D.
,
2003
,
Designing Experiments and Analyzing Data: A Model Comparison Perspective
,
Routledge
,
New York
.
92.
Lix
,
L. M.
,
Keselman
,
J. C.
, and
Keselman
,
H. J.
,
1996
, “
Consequences of Assumption Violations Revisited: A Quantitative Review of Alternatives to the One-Way Analysis of Variance F Test
,”
Rev. Educ. Res.
,
66
(
4
), pp.
579
619
. 10.2307/1170654
93.
Joyce
,
C. K.
,
2009
,
The Blank Page: Effects of Constraint on Creativity
,
University of California
,
Berkley, CA
.
94.
Booth
,
J. W.
,
Alperovich
,
J.
,
Reid
,
T. N.
, and
Ramani
,
K.
,
2016
, “
The Design for Additive Manufacturing Worksheet
,”
28th International Conference on Design Theory and Methodology
,
Charlotte, NC
,
Aug. 21–24
, p.
V007T06A041
, Vol.
7
.
95.
Jonassen
,
D. H.
,
1997
, “
Instructional Design Models for Well-Structured and III-Structured Problem-Solving Learning Outcomes
,”
Educ. Technol. Res. Dev.
,
45
(
1
), pp.
65
94
. 10.1007/BF02299613
96.
Prabhu
,
R.
,
Miller
,
S. R.
,
Simpson
,
T. W.
, and
Meisel
,
N. A.
,
2020
, “
Complex Solutions for Complex Problems? Exploring the Role of Design Task Choice on Learning, Design for Additive Manufacturing Use, and Creativity
,”
ASME J. Mech. Des.
,
142
(
3
), p.
032302
. 10.1115/1.4045127
You do not currently have access to this content.