Abstract

Additive manufacturing (AM) enables engineers to improve the functionality and performance of their designs by adding complexity at little to no additional cost. However, AM processes also exhibit certain unique limitations, such as the presence of support material. These limitations must be accounted for to ensure that designs can be manufactured feasibly and cost-effectively. Given these unique process characteristics, it is important for an AM-trained workforce to be able to incorporate both opportunistic and restrictive design for AM (DfAM) considerations into the design process. While AM/DfAM educational interventions have been discussed in the literature, few studies have objectively assessed the integration of DfAM in student engineering designers’ design outcomes. Furthermore, limited research has explored how the use of DfAM affects the students’ AM designs’ achievement of design task objectives. This research explores this gap in literature through an experimental study with 301 undergraduate students. Specifically, participants were exposed to either restrictive DfAM or dual DfAM (both opportunistic and restrictive) and then asked to participate in a design challenge. The participants’ final designs were evaluated for (1) build time and build material (2) the use of the various DfAM concepts, and (3) the features used to manifest these DfAM concepts. The results show that the use of certain DfAM considerations, such as part complexity, number of parts, support material mass, and build plate contact area (corresponding to warping tendency), correlated with the build material and build time of the AM designs—minimizing both of which were objectives of the design task. The results also show that introducing participants to opportunistic DfAM leads to the generation of designs with higher part complexity and lower build plate contact area but a greater presence of inaccessible support material.

References

1.
Crawford
,
R. H.
, and
Beaman
,
J. J.
,
1999
, “
Solid Freeform Fabrication
,”
IEEE Spectrum
,
36
(
2
), pp.
34
43
. 10.1109/6.744874
2.
Gibson
,
I.
,
Rosen
,
D.
, and
Stucker
,
B.
,
2015
,
Additive Manufacturing Technologies
,
Springer
,
New York
.
3.
Smith
,
H.
3D Printing News and Trends: GE Aviation to Grow Better Fuel Nozzles Using 3D Printing
” [Online]. Available: http://3dprintingreviews.blogspot.co.uk/2013/06/ge-aviation-to-grow-better-fuel-nozzles.html, Accessed Aug. 29, 2017.
4.
Carroll
,
B. E.
,
Palmer
,
T. A.
, and
Beese
,
A. M.
,
2015
, “
Anisotropic Tensile Behavior of Ti-6Al-4V Components Fabricated With Directed Energy Deposition Additive Manufacturing
,”
Acta Mater.
,
87
, pp.
309
320
. 10.1016/j.actamat.2014.12.054
5.
Boothroyd
,
G.
,
1994
, “
Product Design for Manufacture and Assembly
,”
Computer-Aided Des.
,
26
(
7
), pp.
505
520
. 10.1016/0010-4485(94)90082-5
6.
Laverne
,
F.
,
Segonds
,
F.
,
Anwer
,
N.
, and
Le Coq
,
M.
,
2015
, “
Assembly Based Methods to Support Product Innovation in Design for Additive Manufacturing: An Exploratory Case Study
,”
ASME J. Mech. Des.
,
137
(
12
), p.
121701
. 10.1115/1.4031589
7.
Seepersad
,
C. C.
,
Allison
,
J.
, and
Sharpe
,
C.
,
2017
, “
The Need for Effective Design Guides in Additive Manufacturing
,”
Proceedings of the 21st International Conference on Engineering Design (ICED17)
,
5
(
August
), pp.
309
316
.
8.
Renishaw Inc.
,
2017
, “
Digital Evolution of Cranial Surgery
.”
9.
Schmelzle
,
J.
,
Kline
,
E. V.
,
Dickman
,
C. J.
,
Reutzel
,
E. W.
,
Jones
,
G.
, and
Simpson
,
T. W.
,
2015
, “
(Re)Designing for Part Consolidation: Understanding the Challenges of Metal Additive Manufacturing
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111404
. 10.1115/1.4031156
10.
Yang
,
S.
,
Page
,
T.
, and
Zhao
,
Y. F.
,
2018
, “
Understanding the Role of Additive Manufacturing Knowledge in Stimulating Design Innovation for Novice Designers
,”
ASME J. Mech. Des.
,
141
(
2
), p.
021703
. 10.1115/1.4041928
11.
Atzeni
,
E.
,
Iuliano
,
L.
,
Minetola
,
P.
, and
Salmi
,
A.
,
2010
, “
Redesign and Cost Estimation of Rapid Manufactured Plastic Parts
,”
Rapid Prototyping J.
,
16
(
5
), pp.
308
317
. 10.1108/13552541011065704
12.
Yang
,
S.
, and
Zhao
,
Y. F.
,
2015
, “
Additive Manufacturing-Enabled Design Theory and Methodology: A Critical Review
,”
Int. J. Adv. Manuf. Technol.
,
80
(
1–4
), pp.
327
342
. 10.1007/s00170-015-6994-5
13.
Rosen
,
D. W.
,
2008
, “
Design for Additive Manufacturing: A Method to Explore Unexplored Regions of the Design Space
,”
Eighteenth Annual Solid Freeform Fabrication Symposium
,
Austin, TX
,
August
, pp.
402
415
.
14.
Boyard
,
N.
,
Rivette
,
M.
,
Christmann
,
O.
, and
Richir
,
S.
,
2013
, “
A Design Methodology for Parts Using Additive Manufacturing
,”
Proceedings of the 6th International Conference on Advanced Research in Virtual and Rapid Prototyping
,
Leiria, Portugal
,
Oct. 1–5
, pp.
399
404
.
15.
Kumke
,
M.
,
Watschke
,
H.
, and
Vietor
,
T.
,
2017
, “A New Methodological Framework for Design for Additive Manufacturing,”
Additive Manufacturing Handbook: Product Development for the Defense Industry
, 1st ed.,
A. B.
Badiru
,
V. V.
Valencia
, and
D.
Liu
, eds.,
CRC Press
,
Boca Raton
, pp.
187
211
.
16.
Ponche
,
R.
,
Hascoet
,
J. Y.
,
Kerbrat
,
O.
, and
Mognol
,
P.
,
2017
, “A New Global Approach to Design for Additive Manufacturing,”
Additive Manufacturing Handbook: Product Development for the Defense Industry
, 1st ed.,
A. B.
Badiru
,
V. V.
Valencia
, and
D.
Liu
, eds.,
CRC Press
,
Boca Raton
, pp.
169
186
.
17.
Ponche
,
R.
,
Kerbrat
,
O.
,
Mognol
,
P.
, and
Hascoet
,
J. Y.
,
2014
, “
A Novel Methodology of Design for Additive Manufacturing Applied to Additive Laser Manufacturing Process
,”
Rob. Computer-Integr. Manuf.
,
30
(
4
), pp.
389
398
. 10.1016/j.rcim.2013.12.001
18.
Hu
,
K.
,
Jin
,
S.
, and
Wang
,
C. C. L.
,
2015
, “
Support Slimming for Single Material Based Additive Manufacturing
,”
CAD Comput. Aided Des.
,
65
, pp.
1
10
. 10.1016/j.cad.2015.03.001
19.
Strano
,
G.
,
Hao
,
L.
,
Everson
,
R. M.
, and
Evans
,
K. E.
,
2013
, “
A New Approach to the Design and Optimisation of Support Structures in Additive Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
66
(
9–12
), pp.
1247
1254
. 10.1007/s00170-012-4403-x
20.
Kirschman
,
C.
,
Jara-Almonte
,
C.
,
Bagchi
,
A.
,
Dooley
,
R.
, and
Ogale
,
A.
,
1991
, “
Computer Aided Design of Support Structures for Stereolithographic Components
,”
Proceedings of the 1991 ASME Computers in Engineering Conference
,
Santa Clara, CA
, pp.
443
448
.
21.
Das
,
P.
,
Chandran
,
R.
,
Samant
,
R.
, and
Anand
,
S.
,
2015
, “
Optimum Part Build Orientation in Additive Manufacturing for Minimizing Part Errors and Support Structures
,”
43rd Proceedings of the North American Manufacturing Research Institution of SME
,
Elsevier B.V.
, pp.
309
330
.
22.
Zhu
,
Z.
,
Dhokia
,
V.
,
Nassehi
,
A.
, and
Newman
,
S. T.
,
2016
, “
Investigation of Part Distortions as a Result of Hybrid Manufacturing
,”
Rob. Comput.-Integr. Manuf.
,
37
, pp.
23
32
. 10.1016/j.rcim.2015.06.001
23.
Nickel
,
A. H.
,
Barnett
,
D. M.
, and
Prinz
,
F. B.
,
2001
, “
Thermal Stresses and Deposition Patterns in Layered Manufacturing
,”
Mater. Sci. Eng. A
,
317
(
1–2
), pp.
59
64
. 10.1016/S0921-5093(01)01179-0
24.
Li
,
C.
,
Fu
,
C. H.
,
Guo
,
Y. B.
, and
Fang
,
F. Z.
,
2015
, “
A Multiscale Modeling Approach for Fast Prediction of Part Distortion in Selective Laser Melting
,”
J. Mater. Process. Technol.
,
229
, pp.
703
712
. 10.1016/j.jmatprotec.2015.10.022
25.
Turnbull
,
A.
,
Maxwell
,
A. S.
, and
Pillai
,
S.
,
1999
, “
Residual Stress in Polymers—Evaluation of Measurement Techniques
,”
J. Mater. Sci.
,
34
(
3
), pp.
451
459
. 10.1023/A:1004574024319
26.
Ahn
,
S.
,
Montero
,
M.
,
Odell
,
D.
,
Roundy
,
S.
, and
Wright
,
P. K.
,
2002
, “
Anisotropic Material Properties of Fused Deposition Modeling ABS
,”
Rapid Prototyping J.
,
8
(
4
), pp.
248
257
. 10.1108/13552540210441166
27.
Bellini
,
A.
, and
Güçeri
,
S.
,
2013
, “
Mechanical Characterization of Parts Fabricated Using Fused Deposition Modeling
,”
Rapid Prototyping J.
,
19
(
4
), pp.
72
.
28.
Boschetto
,
A.
, and
Bottini
,
L.
,
2016
, “
Design for Manufacturing of Surfaces to Improve Accuracy in Fused Deposition Modeling
,”
Rob. Comput.-Integr. Manuf.
,
37
, pp.
103
114
. 10.1016/j.rcim.2015.07.005
29.
Boschetto
,
A.
,
Bottini
,
L.
, and
Veniali
,
F.
,
2016
, “
Finishing of Fused Deposition Modeling Parts by CNC Machining
,”
Rob. Comput.-Integr. Manuf.
,
41
, pp.
92
101
. 10.1016/j.rcim.2016.03.004
30.
Campbell
,
R. I.
,
Martorelli
,
M.
, and
Lee
,
H. S.
,
2002
, “
Surface Roughness Visualisation for Rapid Prototyping Models R.I
,”
Comput.-Aided Des.
,
34
(
10
), pp.
717
725
. 10.1016/S0010-4485(01)00201-9
31.
Delfs
,
P.
,
T¨ows
,
M.
, and
Schmid
,
H. J.
,
2016
, “
Optimized Build Orientation of Additive Manufactured Parts for Improved Surface Quality and Build Time
,”
Addit. Manuf.
,
12
, pp.
314
320
. 10.1016/j.addma.2016.06.003
32.
Nuñez
,
P. J.
,
Rivas
,
A.
,
García-Plaza
,
E.
,
Beamud
,
E.
, and
Sanz-Lobera
,
A.
,
2015
, “
Dimensional and Surface Texture Characterization in Fused Deposition Modelling (FDM) With ABS Plus
,”
Procedia Eng.
,
132
, pp.
856
863
. 10.1016/j.proeng.2015.12.570
33.
Pandey
,
P. M.
,
Reddy
,
N. V.
, and
Dhande
,
S. G.
,
2003
, “
Improvement of Surface Finish by Staircase Machining in Fused Deposition Modeling
,”
J. Mater. Process. Technol.
,
132
(
1–3
), pp.
323
331
. 10.1016/S0924-0136(02)00953-6
34.
Armillotta
,
A.
,
2006
, “
Assessment of Surface Quality on Textured FDM Prototypes
,”
Rapid Prototyping J.
,
12
(
1
), pp.
35
41
. 10.1108/13552540610637255
35.
Fahad
,
M.
, and
Hopkinson
,
N.
,
2012
, “
A New Benchmarking Part for Evaluating the Accuracy and Repeatability of Additive Manufacturing (AM) Processes
,”
Second International Conference on Mechanical, Production, and Automobile Engineering
,
Singapore
,
Apr. 28–29
, pp.
234
238
.
36.
Moylan
,
S.
,
Slowinski
,
J.
,
Cooke
,
A.
,
Jurrens
,
K.
, and
Donmez
,
M. A.
,
2012
, “
Proposal for a Standardized Test Artifact for Additive
,”
Proceedings of the 23th International Solid Freeform Fabrication Symposium
,
Austin, TX
,
August
, pp.
902
920
.
37.
Umaras
,
E.
, and
Tsuzuki
,
M. S. G.
,
2017
, “
Additive Manufacturing—Considerations on Geometric Accuracy and Factors of Influence
,”
IFAC-PapersOnLine
,
50
(
1
), pp.
14940
14945
. 10.1016/j.ifacol.2017.08.2545
38.
Childs
,
T. H. C.
, and
Juster
,
N. P.
,
1994
, “
Linear and Geometric Accuracies From Layer Manufacturing
,”
Annals ClRP
,
43
(
2
), pp.
163
166
. 10.1016/S0007-8506(07)62187-8
39.
Simpson
,
T. W.
,
Williams
,
C. B.
, and
Hripko
,
M.
,
2017
, “
Preparing Industry for Additive Manufacturing and Its Applications: Summary & Recommendations From a National Science Foundation Workshop
,”
Addit. Manuf.
,
13
, pp.
166
178
. 10.1016/j.addma.2016.08.002
40.
Rosen
,
D. W.
,
2007
, “
Computer-Aided Design for Additive Manufacturing of Cellular Structures
,”
Comput.-Aided Des. Appl.
,
4
(
1–6
), pp.
585
594
. 10.1080/16864360.2007.10738493
41.
Chu
,
C.
,
Graf
,
G.
, and
Rosen
,
D. W.
,
2008
, “
Design for Additive Manufacturing of Cellular Structures
,”
Comput.-Aided Des. Appl.
,
5
(
5
), pp.
686
696
. 10.3722/cadaps.2008.686-696
42.
Murr
,
L. E.
,
Gaytan
,
S. M.
,
Medina
,
F.
,
Lopez
,
H.
,
Martinez
,
E.
,
Machado
,
B. I.
,
Hernandez
,
D. H.
,
Martinez
,
L.
,
Lopez
,
M. I.
,
Wicker
,
R. B.
, and
Bracke
,
J.
,
2010
, “
Next-Generation Biomedical Implants Using Additive Manufacturing of Complex, Cellular and Functional Mesh Arrays
,”
Phil. Trans. A: Math., Phys. Eng. Sci.
,
368
(
1917
), pp.
1999
2032
. 10.1098/rsta.2010.0010
43.
Kaweesa
,
D. V.
,
Spillane
,
D. R.
, and
Meisel
,
N. A.
,
2017
, “
Investigating the Impact of Functionally Graded Materials on Fatigue Life of Material Jetted Specimens
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 7–9
, pp.
578
592
.
44.
Garland
,
A.
, and
Fadel
,
G.
,
2015
, “
Design and Manufacturing Functionally Gradient Material Objects With an Off the Shelf Three-Dimensional Printer: Challenges and Solutions
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111407
. 10.1115/1.4031097
45.
Meisel
,
N.
, and
Williams
,
C.
,
2015
, “
An Investigation of Key Design for Additive Manufacturing Constraints in Multimaterial Three-Dimensional Printing
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111406
. 10.1115/1.4030991
46.
Doubrovski
,
E. L.
,
Tsai
,
E. Y.
,
Dikovsky
,
D.
,
Geraedts
,
J. M. P.
,
Herr
,
H.
, and
Oxman
,
N.
,
2015
, “
Voxel-Based Fabrication Through Material Property Mapping: A Design Method for Bitmap Printing
,”
CAD Comput. Aided Des.
,
60
, pp.
3
13
. 10.1016/j.cad.2014.05.010
47.
Calì
,
J.
,
Calian
,
D. A.
,
Amati
,
C.
,
Kleinberger
,
R.
,
Steed
,
A.
,
Kautz
,
J.
, and
Weyrich
,
T.
,
2012
, “
3D-Printing of Non-Assembly, Articulated Models
,”
ACM Trans. Graphics
,
31
(
6
), p.
1
. 10.1145/2366145.2366149
48.
Hopkinson
,
N.
, and
Dickens
,
P.
,
2003
, “
Analysis of Rapid Manufacturing—Using Layer Manufacturing Processes for Production
,”
Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci.
,
217
(
1
), pp.
31
40
.
49.
Pallari
,
J. H. P.
,
Dalgarno
,
K. W.
, and
Woodburn
,
J.
,
2010
, “
Mass Customization of Foot Orthoses for Rheumatoid Arthritis Using Selective Laser Sintering
,”
IEEE Trans. Biomed. Eng.
,
57
(
7
), pp.
1750
1756
. 10.1109/TBME.2010.2044178
50.
Tuck
,
C. J.
,
Hague
,
R. J. M.
,
Ruffo
,
M.
,
Ransley
,
M.
, and
Adams
,
P.
,
2008
, “
Rapid Manufacturing Facilitated Customization
,”
Int. J. Comput. Integr. Manuf.
,
21
(
3
), pp.
245
258
. 10.1080/09511920701216238
51.
Mohammed
,
M. I.
,
Fitzpatrick
,
A. P.
, and
Gibson
,
I.
,
2017
, “
Customised Design of a Patient Specific 3D Printed Whole Mandible Implant
,”
KnE Eng.
,
2
(
2
), p.
104
. 10.18502/keg.v2i2.602
52.
De Laurentis
,
K. J.
,
Kong
,
F. F.
, and
Mavroidis
,
C.
,
2002
, “
Procedure for Rapid Fabrication of Non-Assembly Mechanisms with Embedded Components
,”
Proceedings of the 2002 ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Montreal, Canada
,
Sept. 29–Oct. 2
, pp.
1
7
.
53.
Aguilera
,
E.
,
Ramos
,
J.
,
Espalin
,
D.
,
Cedillos
,
F.
,
Muse
,
D.
,
Wicker
,
R.
, and
Macdonald
,
E.
,
2013
, “
3D Printing of Electro Mechanical Systems
,”
International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 12–14
, pp.
950
961
.
54.
Lopes
,
A. J.
,
MacDonald
,
E.
, and
Wicker
,
R. B.
,
2012
, “
Integrating Stereolithography and Direct Print Technologies for 3D Structural Electronics Fabrication
,”
Rapid Prototyping J.
,
18
(
2
), pp.
129
143
. 10.1108/13552541211212113
55.
Wicker
,
R. B.
, and
MacDonald
,
E. W.
,
2012
, “
Multi-Material, Multi-Technology Stereolithography
,”
Virtual Phys. Prototyping
,
7
(
3
), pp.
181
194
. 10.1080/17452759.2012.721119
56.
Gao
,
W.
,
Zhang
,
Y.
,
Ramanujan
,
D.
,
Ramani
,
K.
,
Chen
,
Y.
,
Williams
,
C. B.
,
Wang
,
C. C. L.
,
Shin
,
Y. C.
,
Zhang
,
S.
, and
Zavattieri
,
P. D.
,
2015
, “
The Status, Challenges, and Future of Additive Manufacturing in Engineering
,”
Comput.-Aided Des.
,
69
, pp.
65
89
. 10.1016/j.cad.2015.04.001
57.
Seepersad
,
C. C.
,
2014
, “
Challenges and Opportunities in Design for Additive Manufacturing
,”
3D Printing Additive Manuf.
,
1
(
1
), pp.
10
13
. 10.1089/3dp.2013.0006
58.
Ford
,
S.
, and
Minshall
,
T.
,
2019
, “
Invited Review Article : Where and How 3D Printing Is Used in Teaching and Education
,”
Addit. Manuf.
,
25
(
October 2017
), pp.
131
150
. 10.1016/j.addma.2018.10.028
59.
Bøhn
,
J. H.
,
1997
, “
Integrating Rapid Prototyping Into the Engineering Curriculum - a Case Study
,”
Rapid Prototyping J.
,
3
(
1
), pp.
32
37
. 10.1108/13552549710169264
60.
Jensen
,
D.
,
Randell
,
C.
,
Feland
,
J.
, and
Bowe
,
M.
,
2002
, “
A Study of Rapid Prototyping for Use in Undergraduate Design Education
,”
ASEE Annual Conference Proceedings
,
Montreal, Canada
,
June 16–19
, pp.
8003
8017
.
61.
Williams
,
C. B.
, and
Seepersad
,
C. C.
,
2012
, “
Design for Additive Manufacturing Curriculum: A Problem-and Project-Based Approach
,”
International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 6–8
, pp.
81
92
.
62.
Yang
,
L.
,
2018
, “
Education of Additive Manufacturing—An Attempt to Inspire Research
,”
Solid Freeform Fabrication 2018: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference
,
Austin, TX
,
Aug. 13–15
, pp.
44
54
.
63.
Diegel
,
O.
,
Nordin
,
A.
, and
Motte
,
D
,
2019
,
Additive Manufacturing—Developments in Training and Education
,
Springer International Publishing AG
,
Cham, Switzerland
, pp.
139
149
.
64.
Richter
,
T.
,
Schumacher
,
F.
,
Watschke
,
H.
, and
Vietor
,
T.
,
2018
, “
Exploitation of Potentials of Additive Manufacturing in Ideation Workshops
,”
The Fifth International Conference on Design Creativity (ICDC2018)
,
Bath, UK
,
Jan. 31–Feb. 2
, pp.
1
8
.
65.
Kumke
,
M.
,
Watschke
,
H.
,
Hartogh
,
P.
,
Bavendiek
,
A. K.
, and
Vietor
,
T.
,
2018
, “
Methods and Tools for Identifying and Leveraging Additive Manufacturing Design Potentials
,”
Int. J. Interactive Design Manuf.
,
12
(
2
), pp.
481
493
. 10.1007/s12008-017-0399-7
66.
Williams
,
C. B.
,
Sturm
,
L.
, and
Wicks
,
A.
,
2015
, “
Advancing Student Learning Of Design for Additive Manufacturing Principles Through An Extracurricular Vehicle Design Competition
,”
Proceedings of the ASME 2015 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 2–5
, pp.
1
8
.
67.
Ferchow
,
J.
,
Klahn
,
C.
, and
Meboldt
,
M.
,
2018
, “
Enabling Graduate Students to Design for Additive Manufacturing Through Teaching and Experience Transfer
,”
Proceedings of the 20th International Conference on Engineering and Product Design Education, E and PDE 2018
,
London, UK
,
Sept. 6–7
.
68.
Leutenecker-Twelsiek
,
B.
,
Ferchow
,
J.
,
Klahn
,
C.
, and
Meboldt
,
M.
,
2017
, “The Experience Transfer Model for New Technologies—Application on Design for Additive Manufacturing,”
Industrializing Additive Manufacturing - Proceedings of Additive Manufacturing in Products and Applications - AMPA2017
,
M.
Meboldt
, and
C.
Klahn
, eds.,
Springer
,
Cham
, pp.
337
346
.
69.
Pryor
,
S.
,
2014
, “
Implementing a 3D Printing Service in an Academic Library
,”
J. Libr. Adm.
,
54
(
1
), pp.
1
10
. 10.1080/01930826.2014.893110
70.
Meisel
,
N. A.
, and
Williams
,
C. B.
,
2015
, “
Design and Assessment of a 3D Printing Vending Machine
,”
Rapid Prototyping J.
,
21
(
5
), pp.
471
481
. 10.1108/RPJ-07-2014-0081
71.
Kuhn
,
J.
,
Green
,
M.
,
Bashyam
,
S.
, and
Seepersad
,
C. C.
,
2014
, “
The Innovation Station: A 3D Printing Vending Machine for UT Austin Students
,”
International Solid Freeform Fabrication Symposium
, pp.
1371
1385
.
72.
Sinha
,
S.
,
Rieger
,
K.
,
Knochel
,
A. D.
, and
Meisel
,
N. A.
,
2017
, “
Design and Preliminary Evaluation of a Deployable Mobile Makerspace for Informal Additive Manufacturing Education
,” pp.
2801
2815
.
73.
Blösch-Paidosh
,
A.
, and
Shea
,
K.
,
2018
, “
Design Heuristics for Additive Manufacturing Validated Through a User Study
,”
ASME J. Mech. Des.
,
141
(
4
), pp.
1
40
.
74.
Blösch-Paidosh
,
A.
, and
Shea
,
K.
,
2017
, “
Design Heuristics for Additive Manufacturing
,”
Proceedings of the International Conference on Engineering Design, ICED
,
Vancouver, Canada
,
Aug. 21–25
, pp.
91
100
.
75.
Blösch-Paidosh
,
A.
, and
Shea
,
K.
,
2018
, “
Preliminary User Study on Design Heuristics for Additive Manufacturing
,”
Proceedings of the ASME 2018 International Design Engineering Technical Conference
,
Quebec City, Canada
,
Aug. 26–29
, pp.
1
10
.
76.
Blösch-Paidosh
,
A.
,
Ahmed-Kristensen
,
S.
, and
Shea
,
K.
,
2019
, “
Evaluating the Potential of Design for Additive Manufacturing Heuristic Cards to Stimulate Novel Product Redesigns
,”
Proceedings of the ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim CA
,
Aug. 18–21
, pp.
1
10
.
77.
Perez
,
K. B.
,
Anderson
,
D. S.
,
Hölttä-Otto
,
K.
, and
Wood
,
K. L.
,
2015
, “
Crowdsourced Design Principles for Leveraging the Capabilities of Additive Manufacturing
,”
International Conference of Engineering Design
,
(July)
, pp.
1
10
.
78.
Perez
,
K. B.
, and
Wood
,
K. L.
,
2018
,
Additive Manufacturing (AM) Design Principle Cards
. 10.13140/RG.2.2.12342.55365
79.
Lauff
,
C. A.
,
Perez
,
K. B.
,
Camburn
,
B. A.
, and
Wood
,
K. L.
,
2019
, “
Design Principle Cards: Toolset to Support Innovations With Additive Manufacturing
,”
Proceedings of the ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
, pp.
1
15
.
80.
Perez
,
K. B.
,
Lauff
,
C. A.
,
Camburn
,
B.
, and
Wood
,
K. L.
,
2019
, “
Design Innovation With Additive Manufacturing: A Methodology
,”
Proceedings of the ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
, pp.
1
11
.
81.
Perez
,
B.
,
Hilburn
,
S.
,
Jensen
,
D.
, and
Wood
,
K. L.
,
2019
, “
Design Principle-Based Stimuli for Improving Creativity During Ideation
,”
Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci.
,
233
(
2
), pp.
493
503
. 10.1177/0954406218809117
82.
Valjak
,
F.
, and
Bojčetić
,
N.
,
2019
, “
Conception of Design Principles for Additive Manufacturing
,”
Proceedings of the Design Society: International Conference on Engineering Design
,
Delft, The Netherlands
,
Aug. 5–8
.
83.
Schumacher
,
F.
,
Watschke
,
H.
,
Kuschmitz
,
S.
, and
Vietor
,
T.
,
2019
, “
Goal Oriented Provision of Design Principles for Additive Manufacturing to Support Conceptual Design
,”
Proceedings of the Design Society: International Conference on Engineering Design
,
1
(
1
), pp.
749
758
. 10.1017/dsi.2019.79
84.
Shah
,
J.
,
Vargas-Hernandez
,
N.
, and
Smith
,
S. M.
,
2003
, “
Metrics for Measuring Ideation Effectiveness
,”
Des. Stud.
,
24
(
2
), pp.
111
134
. 10.1016/S0142-694X(02)00034-0
85.
Nelson
,
B. A.
,
Wilson
,
J. O.
,
Rosen
,
D.
, and
Yen
,
J.
,
2009
, “
Refined Metrics for Measuring Ideation Effectiveness
,”
Des. Stud.
,
30
(
6
), pp.
737
743
. 10.1016/j.destud.2009.07.002
86.
Johnson
,
T. A.
,
Caldwell
,
B. W.
,
Cheeley
,
A.
, and
Green
,
M. G.
,
2016
, “
Comparison and Extension of Novelty Metrics for Problem-Solving Tasks
,”
Proceedings of the ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
,
Aug. 21–24
, pp.
1
12
.
87.
Amabile
,
T. M.
,
1996
,
Creativity in Context: Update to the Social Psychology of Creativity
,
Westview Press
,
New York
.
88.
Baer
,
J.
, and
McKool
,
S. S.
,
2016
, “Assessing Creativity Using the Consensual Assessment Technique,”
Handbook of Research on Assessment Technologies, Methods, and Applications in Higher Education
,
C. S.
Schreiner
, ed.,
Information Science Reference
,
Hershey, PA
, pp.
65
77
.
89.
Saal
,
F. E.
,
Downey
,
R. G.
, and
Lahey
,
M. A.
,
1980
, “
Rating the Ratings: Assessing the Psychometric Quality of Rating Data
,”
Psychol. Bull.
,
88
(
2
), pp.
413
428
. 10.1037/0033-2909.88.2.413
90.
Kaufman
,
J. C.
,
Baer
,
J.
, and
Cole
,
J. C.
,
2009
, “
Expertise, Domains, and the Consensual Assessment Technique
,”
J. Creat. Behav.
,
43
(
4
), pp.
223
233
. 10.1002/j.2162-6057.2009.tb01316.x
91.
Kaufman
,
J. C.
,
Baer
,
J.
,
Cole
,
J. C.
, and
Sexton*
,
J. D.
,
2008
, “
A Comparison of Expert and Nonexpert Raters Using the Consensual Assessment Technique
,”
Creat. Res. J.
,
20
(
2
), pp.
171
178
. 10.1080/10400410802059929
92.
Kaufman
,
J. C.
,
Baer
,
J.
,
Cropley
,
D. H.
,
Reiter-Palmon
,
R.
, and
Sinnett
,
S.
,
2013
, “
Furious Activity vs. Understanding: How Much Expertise Is Needed to Evaluate Creative Work?
,”
Psychology of Aesthetics, Creativity, and the Arts
,
7
(
4
), pp.
332
340
. 10.1037/a0034809
93.
Besemer
,
S. P.
,
1998
, “
Creative Product Analysis Matrix: Testing the Model Structure and a Comparison Among Products-Three Novel Chairs
,”
Creat. Res. J.
,
11
(
4
), pp.
333
346
. 10.1207/s15326934crj1104_7
94.
Linsey
,
J. S.
,
Clauss
,
E. F.
,
Kurtoglu
,
T.
,
Murphy
,
J. T.
,
Wood
,
K. L.
, and
Markman
,
A. B.
,
2011
, “
An Experimental Study of Group Idea Generation Techniques: Understanding the Roles of Idea Representation and Viewing Methods
,”
ASME J. Mech. Des.
,
133
(
3
), p.
031008
. 10.1115/1.4003498
95.
Booth
,
J. W.
,
Alperovich
,
J.
,
Chawla
,
P.
,
Ma
,
J.
,
Reid
,
T.
, and
Ramani
,
K.
,
2017
, “
The Design for Additive Manufacturing Worksheet
,”
ASME J. Mech. Des.
,
139
(
October 2017
), pp.
1
9
.
96.
Prabhu
,
R.
,
Miller
,
S. R.
,
Simpson
,
T. W.
, and
Meisel
,
N. A.
,
2020
, “
Exploring the Effects of Additive Manufacturing Education on Students’ Engineering Design Process and Its Outcomes
,”
ASME J. Mech. Des.
,
142
(
4
), p.
042001
. https://doi.org/10.1115/1.4044324
97.
Prabhu
,
R.
,
Miller
,
S. R.
,
Simpson
,
T. W.
, and
Meisel
,
N. A.
,
2019
, “
Complex Solutions for Complex Problems? Exploring the Effects of Task Complexity on Student Use of Design for Additive Manufacturing and Creativity
,”
Proceedings of the ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
, pp.
1
15
.
98.
Carter
,
W. T.
,
Erno
,
D. J.
,
Abbott
,
D. H.
,
Bruck
,
C. E.
,
Wilson
,
G. H.
,
Wolfe
,
J. B.
,
Finkhousen
,
D. M.
,
Tepper
,
A.
, and
Stevens
,
R. G.
,
2014
, “
The GE Aircraft Engine Bracket Challenge: An Experiment in Crowdsourcing for Mechanical Design Concepts
,”
25th Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 4–6
.
99.
Bransford
,
J. D.
,
Brown
,
A. L.
, and
Cocking
,
R. R.
,
1999
, “Learning and Transfer,”
How People Learn : Brain, Mind, Experience, and School
,
J. D.
Bransford
,
A. L.
Brown
, and
R. R.
Cocking
, eds.,
National Academy Press
,
Washington, DC
, pp.
39
66
.
100.
Bloom
,
B. S.
,
Engelhart
,
M. D.
,
Furst
,
E. J.
,
Hill
,
W. H.
, and
Krathwohl
,
D. R
.,
1956
, “The Classification of Educational Goals,”
Taxonomy of Educational Objectives
,
B.S.
Bloom
, ed.,
Longmans, Green, 1956
,
London, WI
, p.
207
.
101.
Prabhu
,
R.
,
Miller
,
S. R.
,
Simpson
,
T. W.
, and
Meisel
,
N. A.
,
2020
, “
Complex Solutions for Complex Problems? Exploring the Role of Design Task Choice on Learning, Design for Additive Manufacturing Use, and Creativity
,”
ASME J. Mech. Des.
,
142
(
3
), p.
032302
. https://doi.org/10.1115/1.4045127
102.
Goldschmidt
,
G.
, and
Rodgers
,
P. A.
,
2013
, “
The Design Thinking Approaches of Three Different Groups of Designers Based on Self-Reports
,”
Des. Stud.
,
34
(
4
), pp.
454
471
. 10.1016/j.destud.2013.01.004
103.
Yang
,
M. C.
,
2005
, “
A Study of Prototypes, Design Activity, and Design Outcome
,”
Des. Stud.
,
26
(
6
), pp.
649
669
. 10.1016/j.destud.2005.04.005
104.
Silvia
,
P. J.
,
Winterstein
,
B. P.
,
Willse
,
J. T.
,
Barona
,
C. M.
,
Cram
,
J. T.
,
Hess
,
K. I.
,
Martinez
,
J. L.
, and
Richard
,
C. A.
,
2008
, “
Assessing Creativity with Divergent Thinking Tasks: Exploring the Reliability and Validity of New Subjective Scoring Methods
,”
Psychology of Aesthetics, Creativity, and the Arts
,
2
(
2
), pp.
68
85
. 10.1037/1931-3896.2.2.68
105.
Zheng
,
X.
, and
Miller
,
S. R.
,
2019
, “
Should It Stay or Should It Go?: A Case Study of Concept Screening in Engineering Design Industry
,”
Proceedings of the ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
.
106.
Toh
,
C. A.
, and
Miller
,
S. R.
,
2014
, “
The Role of Individual Risk Attitudes on the Selection of Creative Concepts in Engineering Design
,”
Proceedings of the ASME 2014 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
Buffalo, NY
,
Aug. 17–20
, pp.
1
10
.
107.
Toh
,
C. A.
, and
Miller
,
S. R.
,
2015
, “
How Engineering Teams Select Design Concepts: A View Through the Lens of Creativity
,”
Des. Stud.
,
38
, pp.
111
138
. 10.1016/j.destud.2015.03.001
108.
Saunders
,
M.
,
Seepersad
,
C.
, and
Holtta-Otto
,
K.
,
2011
, “
The Characteristics of Innovative, Mechanical Products
,”
ASME J. Mech. Des.
,
133
(
2
), p.
021009
. 10.1115/1.4003409
109.
Niazi
,
A.
,
Dai
,
J. S.
,
Balabani
,
S.
, and
Seneviratne
,
L.
,
2006
, “
Product Cost Estimation: Technique Classification and Methodology Review
,”
ASME J. Manuf. Sci. Eng.
,
128
(
2
), pp.
563
575
. 10.1115/1.2137750
110.
Evans
,
A. G.
,
2001
, “
Lightweight Materials and Structures
,”
MRS Bull.
,
26
(
10
), pp.
790
797
. 10.1557/mrs2001.206
111.
Bracken
,
J.
,
Bentley
,
Z.
,
Meyer
,
J.
,
Miller
,
E.
,
Jablokow
,
K.
,
Simpson
,
T. W.
, and
Meisel
,
N. A.
,
2019
, “
Investigating the Gap Between Research and Practice in Additive Manufacturing
,”
International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 12–14
.
112.
Barclift
,
M.
,
Simpson
,
T. W.
,
Nusiner
,
M. A.
, and
Miller
,
S.
,
2017
, “
An Investigation Into the Driving Factors of Creativity in Design for Additive Manufacturing
,”
Proceedings of the ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Cleveland, OH
,
Aug. 6–9
, pp.
1
14
.
113.
Shrout
,
P. E.
, and
Fleiss
,
J. L.
,
1979
, “
Intraclass Correlations: Uses in Assessing Rater Reliability
,”
Psychol. Bull.
,
86
(
2
), pp.
420
428
. 10.1037/0033-2909.86.2.420
114.
Mann
,
H. B.
, and
Whitney
,
D. R.
,
1947
, “
On a Test of Whether One of Two Random Variables Is Stochastically Larger Than the Other
,”
Annals Math. Stat.
,
18
(
1
), pp.
50
60
. 10.1214/aoms/1177730491
115.
Agresti
,
A.
,
2007
,
An Introduction to Categorical Data Analysis
, 2nd ed.,
John Wiley and Sons, Inc.
,
Hoboken, NJ
.
116.
Cochran
,
W. G.
,
2006
, “
Some Methods for Strengthening the Common χ2 Tests
,”
Biometrics
,
10
(
4
), p.
417
. 10.2307/3001616
117.
Prabhu
,
R.
,
Miller
,
S. R.
,
Simpson
,
T. W.
, and
Meisel
,
N. A.
,
2018
, “
Teaching Design Freedom: Exploring the Effects of Design for Additive Manufacturing Education on the Cognitive Components of Students’ Creativity
,”
Proceedings of the ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Canada
,
Aug. 26–29
, pp.
1
14
.
118.
Thompson
,
M. K.
,
Moroni
,
G.
,
Vaneker
,
T.
,
Fadel
,
G.
,
Campbell
,
R. I.
,
Gibson
,
I.
,
Bernard
,
A.
,
Schulz
,
J.
,
Graf
,
P.
,
Ahuja
,
B.
, and
Martina
,
F.
,
2016
, “
Design for Additive Manufacturing: Trends, Opportunities, Considerations, and Constraints
,”
CIRP Annals—Manuf. Technol.
,
65
(
2
), pp.
737
760
. 10.1016/j.cirp.2016.05.004
You do not currently have access to this content.